Dendriform pulmonary ossification: unusual cause of spontaneous pneumothorax

Jiro Abe,1,3 Hiroyuki Oura,1 Hiromichi Niikawa,1,4 Hiroshi Yaegashi,2 Takashi Kondo4

1Department of Thoracic Surgery, Iwate Prefectural Central Hospital, Morioka, Japan
2Department of Pathology, Iwate Prefectural, Central Hospital, Morioka, Japan
3Department of Thoracic Surgery, Miyagi Cancer Center, Natori, Japan
4Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan

Correspondence to
Dr Jiro Abe, Department of Thoracic Surgery, Miyagi Cancer Center, 47-1 Nodayama, Medishima-Shiote, Natori, Miyagi 981-1239, Japan;
jab@kmph.mfnet.ne.jp

Received 19 November 2012
Revised 23 January 2013
Accepted 28 January 2013

A 53-year-old man was admitted to our hospital with a recurrence of spontaneous pneumothorax. He had no history of other diseases including chronic lung diseases. A month prior to this admission, he had a first pneumothorax and was treated with 4 days of intercostal drainage. CT scan showed no bulla, but revealed multiple small polygonal lesions consistent with fibrotic lesions mainly in the right lower lobe (figure 1). We performed right thoracotomy and found that air leakage arose from torn visceral pleura which had been pierced by a drumstick-shaped bony structure (figure 2A). Some other solid flat lesions were palpable in the lung. They were almost confluent, and had a dendriform appearance. We removed the bony tissue, and repaired the torn pleura. Pathological exam revealed that this was mature bone with normal marrow (figure 2B). The patient has been healthy without a further pneumothorax since the operation.

LEARNING POINTS
Spontaneous pneumothorax caused by pulmonary ossification is a rare event though pulmonary ossification is not so uncommon. A previous report described that pulmonary ossification had been observed in 0.4% of all autopsy cases.1 While many basic diseases such as congestive heart failure, pulmonary fibrosis, diabetes mellitus and other metabolic diseases can cause secondary pulmonary ossification, primary pulmonary ossification is of unknown aetiology and is called idiopathic pulmonary ossification. Pathologically, idiopathic pulmonary ossification is classified into two forms: dendritic (tree-like branched) pulmonary ossification (DPO) and nodular pulmonary ossification.1 CT scan images of dendritic pulmonary ossification show irregular nodules which are discrete or are joined to each other; they typically form a dendriform lesion. Calcified high density lesions are not always seen on radiological imaging even though mature bone tissue is demonstrated in such lesions under the microscope.2

Competing interests None.
Patient consent Obtained.
Ethics approval Research ethics committee of Central Hospital of Iwate Prefecture.

Figure 1 CT scan images of dendritic pulmonary ossification patient show dendriform irregular lesions in right lower lobe. A calcified deposit can be seen in one lesion, though calcification is not dominant.

Figure 2 In the centre of the photo, a drumstick-shaped bony solid tissue arose from inside the lung, and pierced the visceral pleura. Air leakage from the tear could be found during the operation. Irregular yellowish lesions under the pleura were dominant in the lower lobe (black arrows). (B) Microscopic view of the drumstick. Trabeculated mature bone structure with normal marrow was observed.
Chest clinic

Provenance and peer review Not commissioned; internally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

REFERENCES

Dendriform pulmonary ossification: unusual cause of spontaneous pneumothorax

Jiro Abe, Hiroyuki Oura, Hiromichi Niikawa, Hiroshi Yaegashi and Takashi Kondo

Thorax published online February 15, 2013

Updated information and services can be found at:
http://thorax.bmj.com/content/early/2013/02/14/thoraxjnl-2012-203024

These include:

References
This article cites 2 articles, 1 of which you can access for free at:
http://thorax.bmj.com/content/early/2013/02/14/thoraxjnl-2012-203024#BIBL

Open Access
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/3.0/ and http://creativecommons.org/licenses/by-nc/3.0/legalcode

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Open access (251)
Thorax Images in Thorax (149)
Radiology (diagnostics) (812)
Screening (oncology) (407)
Journalology (123)
Cardiothoracic surgery (676)
Heart failure (27)
Interstitial lung disease (559)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/