Macrolides for yet another chronic airway disease: severe asthma?

Peter G Gibson

Macrolides have a macrocyclic lactone ring, whose size and features have been modified from the 14 carbon structure of erythromycin in order to develop newer agents such as azithromycin. They were originally derived from products the microbial order Actinomycetales (Saccharopolyspora erythraea, formerly Streptomyces erythrae), and are yet another respiratory harvest from the organism that has given us many antibiotics, starting with the important antituberculosis drug, streptomycin. Macrolides are widely used as antibiotics, and now form part of guideline-recommended therapy in community-acquired pneumonia. They have an expanding role in the therapy of chronic inflammatory diseases based on their additional anti-inflammatory and immunosuppressive properties. Further development has produced broad-spectrum antibacterials, such as AZM, with a longer half-life, and minimal inhibition of cytochrome CYP3A4 and, hence, fewer drug interactions. Other developments in this class include tacrolimus and its derivatives that target macrophillin-12 (FK506 binding protein) and are potent immunosuppressive agents.

The classical airway disease that responds to long-term low-dose macrolide therapy is diffuse panbronchiolitis in Asian populations.1 The pathological lesion is centred originally derived from products the microbial order Actinomycetales (Saccharopolyspora erythraea, formerly Streptomyces erythrae), and are yet another respiratory harvest from the organism that has given us many antibiotics, starting with the important antituberculosis drug, streptomycin. Macrolides are widely used as antibiotics, and now form part of guideline-recommended therapy in community-acquired pneumonia. They have an expanding role in the therapy of chronic inflammatory diseases based on their additional anti-inflammatory and immunosuppressive properties. Further development has produced broad-spectrum antibacterials, such as AZM, with a longer half-life, and minimal inhibition of cytochrome CYP3A4 and, hence, fewer drug interactions. Other developments in this class include tacrolimus and its derivatives that target macrophillin-12 (FK506 binding protein) and are potent immunosuppressive agents.

The classical airway disease that responds to long-term low-dose macrolide therapy is diffuse panbronchiolitis in Asian populations.1 The pathological lesion is centred originally derived from products the microbial order Actinomycetales (Saccharopolyspora erythraea, formerly Streptomyces erythrae), and are yet another respiratory harvest from the organism that has given us many antibiotics, starting with the important antituberculosis drug, streptomycin. Macrolides are widely used as antibiotics, and now form part of guideline-recommended therapy in community-acquired pneumonia. They have an expanding role in the therapy of chronic inflammatory diseases based on their additional anti-inflammatory and immunosuppressive properties. Further development has produced broad-spectrum antibacterials, such as AZM, with a longer half-life, and minimal inhibition of cytochrome CYP3A4 and, hence, fewer drug interactions. Other developments in this class include tacrolimus and its derivatives that target macrophillin-12 (FK506 binding protein) and are potent immunosuppressive agents.

The classical airway disease that responds to long-term low-dose macrolide therapy is diffuse panbronchiolitis in Asian populations.1 The pathological lesion is centred originally derived from products the microbial order Actinomycetales (Saccharopolyspora erythraea, formerly Streptomyces erythrae), and are yet another respiratory harvest from the organism that has given us many antibiotics, starting with the important antituberculosis drug, streptomycin. Macrolides are widely used as antibiotics, and now form part of guideline-recommended therapy in community-acquired pneumonia. They have an expanding role in the therapy of chronic inflammatory diseases based on their additional anti-inflammatory and immunosuppressive properties. Further development has produced broad-spectrum antibacterials, such as AZM, with a longer half-life, and minimal inhibition of cytochrome CYP3A4 and, hence, fewer drug interactions. Other developments in this class include tacrolimus and its derivatives that target macrophillin-12 (FK506 binding protein) and are potent immunosuppressive agents.

The classical airway disease that responds to long-term low-dose macrolide therapy is diffuse panbronchiolitis in Asian populations.1 The pathological lesion is centred originally derived from products the microbial order Actinomycetales (Saccharopolyspora erythraea, formerly Streptomyces erythrae), and are yet another respiratory harvest from the organism that has given us many antibiotics, starting with the important antituberculosis drug, streptomycin. Macrolides are widely used as antibiotics, and now form part of guideline-recommended therapy in community-acquired pneumonia. They have an expanding role in the therapy of chronic inflammatory diseases based on their additional anti-inflammatory and immunosuppressive properties. Further development has produced broad-spectrum antibacterials, such as AZM, with a longer half-life, and minimal inhibition of cytochrome CYP3A4 and, hence, fewer drug interactions. Other developments in this class include tacrolimus and its derivatives that target macrophillin-12 (FK506 binding protein) and are potent immunosuppressive agents.

The classical airway disease that responds to long-term low-dose macrolide therapy is diffuse panbronchiolitis in Asian populations.1 The pathological lesion is centred originally derived from products the microbial order Actinomycetales (Saccharopolyspora erythraea, formerly Streptomyces erythrae), and are yet another respiratory harvest from the organism that has given us many antibiotics, starting with the important antituberculosis drug, streptomycin. Macrolides are widely used as antibiotics, and now form part of guideline-recommended therapy in community-acquired pneumonia. They have an expanding role in the therapy of chronic inflammatory diseases based on their additional anti-inflammatory and immunosuppressive properties. Further development has produced broad-spectrum antibacterials, such as AZM, with a longer half-life, and minimal inhibition of cytochrome CYP3A4 and, hence, fewer drug interactions. Other developments in this class include tacrolimus and its derivatives that target macrophillin-12 (FK506 binding protein) and are potent immunosuppressive agents.

Macrolides have a macrocyclic lactone ring, whose size and features have been modified from the 14 carbon structure of erythromycin in order to develop newer agents such as azithromycin. They were originally derived from products the microbial order Actinomycetales (Saccharopolyspora erythraea, formerly Streptomyces erythrae), and are yet another respiratory harvest from the organism that has given us many antibiotics, starting with the important antituberculosis drug, streptomycin. Macrolides are widely used as antibiotics, and now form part of guideline-recommended therapy in community-acquired pneumonia. They have an expanding role in the therapy of chronic inflammatory diseases based on their additional anti-inflammatory and immunosuppressive properties. Further development has produced broad-spectrum antibacterials, such as AZM, with a longer half-life, and minimal inhibition of cytochrome CYP3A4 and, hence, fewer drug interactions. Other developments in this class include tacrolimus and its derivatives that target macrophillin-12 (FK506 binding protein) and are potent immunosuppressive agents.

The classical airway disease that responds to long-term low-dose macrolide therapy is diffuse panbronchiolitis in Asian populations.1 The pathological lesion is centred originally derived from products the microbial order Actinomycetales (Saccharopolyspora erythraea, formerly Streptomyces erythrae), and are yet another respiratory harvest from the organism that has given us many antibiotics, starting with the important antituberculosis drug, streptomycin. Macrolides are widely used as antibiotics, and now form part of guideline-recommended therapy in community-acquired pneumonia. They have an expanding role in the therapy of chronic inflammatory diseases based on their additional anti-inflammatory and immunosuppressive properties. Further development has produced broad-spectrum antibacterials, such as AZM, with a longer half-life, and minimal inhibition of cytochrome CYP3A4 and, hence, fewer drug interactions. Other developments in this class include tacrolimus and its derivatives that target macrophillin-12 (FK506 binding protein) and are potent immunosuppressive agents.

The classical airway disease that responds to long-term low-dose macrolide therapy is diffuse panbronchiolitis in Asian populations.1 The pathological lesion is centred originally derived from products the microbial order Actinomycetales (Saccharopolyspora erythraea, formerly Streptomyces erythrae), and are yet another respiratory harvest from the organism that has given us many antibiotics, starting with the important antituberculosis drug, streptomycin. Macrolides are widely used as antibiotics, and now form part of guideline-recommended therapy in community-acquired pneumonia. They have an expanding role in the therapy of chronic inflammatory diseases based on their additional anti-inflammatory and immunosuppressive properties. Further development has produced broad-spectrum antibacterials, such as AZM, with a longer half-life, and minimal inhibition of cytochrome CYP3A4 and, hence, fewer drug interactions. Other developments in this class include tacrolimus and its derivatives that target macrophillin-12 (FK506 binding protein) and are potent immunosuppressive agents.
when evaluating new therapies in severe asthma. It provides promising data for a clinically important but phenotype-specific effect of AZM in non-eosinophilic asthma, but also highlights a potential downside of microbial resistance. Before recommending AZM for severe asthma, we need more of both efficacy and safety data from larger patient numbers, and from a primary outcome analysis. Such a study is ongoing (ACTRN12609000197235).

Competing interests None.

Provenance and peer review Commissioned; internally peer reviewed.

To cite Gibson PG. Thorax Published Online First: [please include Day Month Year] doi:10.1136/thoraxjnl-2012-203055

REFERENCES