CASE BASED DISCUSSION

A[H1N1] flu and refractory hypoxaemia: Is extracorporeal lung support the holy grail?

T V Veenith, M Rana, A Ercole, K Gunning, R Mahroof

ABSTRACT

There is a call for methodologically robust randomised clinical trials in adult extracorporeal membrane oxygenation for its routine implementation for patients with “failing” conventional ventilation. Adherence to lung protective ventilation strategies, along with fluid balance [if required early renal replacement therapy] and inotropes to support the circulation to minimise ventilator-induced lung injury, may mitigate deterioration requiring extracorporeal lung support. Currently there is no convincing evidence to routinely advocate extracorporeal lung support in failed conventional ventilation, and a prospective trial is needed to define standard best practice and to tailor extracorporeal lung support referral criteria in young patient cohort with severe refractory respiratory failure.

Ventricular failure (VF) is a common cause of death in critically ill patients. In patients with established VF, immediate treatment is essential to improve outcomes. The use of extracorporeal membrane oxygenation (ECMO) for VF has been reported to improve survival, but the evidence is limited. A recent meta-analysis of patients with VF treated with ECMO found a survival rate of 60.5% at 30 days. However, the results were heterogeneous and the authors called for further research to improve the evidence base.

ADJUNCTIVE VENTILATOR THERAPIES

Proline ventilation (PV) can be used in ARDS with refractory hypoxaemia to improve oxygenation. However, improvement in mortality with PV is seen only in a subset of patients with severe refractory hypoxaemia. This would be difficult in your patient because of high BMI. High frequency oscillatory ventilation (HFOV) is an alternative technique to conventional ventilation in severe hypoxaemic respiratory failure, with little benefit in maintenance of PaCO2. HFOV uses small Vt’s (usually less than the anatomical dead space) and is delivered at high frequencies (3–15 Hz). A recent meta-analysis has shown a reduction in in-hospital mortality for patients with ARDS and a lower risk of death.1 2
and 30-day mortality along with a reduced risk of ‘treatment failure’ when compared with conventional ventilation in ARDS. A UK multicentre study into HFOV in ARDS is currently underway (OSCAR Trials No. ISRCTN10416500).

ECLS: EXTRACORPOREAL MEMBRANE OXYGENATION (ECMO) AND EXTRACORPOREAL CO2 REMOVAL (ECCO2R)

ECLS was first used in 1972, and in an ICU setting it encompasses both an ECCO2R device (iLA by Novalung, Talheim, Germany) and veno-arterial (VA) or veno-venous (VV) ECMO. ECLS enables the use of a lower VT at aptly named ‘rest settings’ to reduce VILI and any ventilator-associated haemodynamic compromise.6 The Glenfield Hospital, Leicester criteria for ECMO are: reversible cause of respiratory failure, <7 days high pressure or high FiO2 ventilation, Murray score >3 (weighted score of: CXR quadrants, PaO2/FiO2 ratio on FiO2 1.0, PEEP and lung compliance), severe hypercarbic pH <7.20 with no contraindication(s) for anticoagulation. ECCO2R requires arterial and venous cannulation of femoral vessels, and an adequate cardiovascular reserve to drive the pumpless arterio-venous circuit.

While the use of ECMO in neonates is an established practice,6 it is not so in adults. Previous trials in adults with ECMO have failed to show any benefit, but were done during the era prior to ‘rest setting’ LPV. A trial of conventional ventilatory support versus ECMO for severe adult respiratory failure (CESAR trial, single-centre study) suggested an improvement in mortality (one extra survivor for every six patients treated) without disability at 6 months. This trial has been criticised for heterogeneity of ventilatory management in the conventional ventilation arm, and was a pragmatic trial concluded without adequate pretrial efficacy data.

Out of the 14 patients with A[H1N1] who required MV at our hospital this winter, only one patient was referred for ECMO, but did not receive it, similar to a published series from North America.5 We had no mortality from A[H1N1] in patients treated on our ICUs. However, the UK experience with A[H1N1] over the last two winters suggests that ECLS could have a role in managing severe refractory respiratory failure. We feel that as yet there is no convincing evidence to routinely advocate ECLS in failed conventional ventilation. While there are calls for its routine implementation for patients with ‘failing’ conventional ventilation, strict adherence to LPV strategies, together with meticulous control of fluid balance (if required early renal replacement therapy) and inotropes to support the circulation and minimise VILI, may avoid the need for ECLS. Further randomised trials are still needed to identify the optimal place of ECLS within the current best practice management of refractory hypoxaemia.

Funding Dr TV Veenith is supported by a clinical research training fellowship from the National Institute of Academic Anaesthesia (grant number RG61766 and RUG/032).

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES


A[H1N1] flu and refractory hypoxaemia: Is extracorporeal lung support the holy grail?

T V Veenith, M Rana, A Ercole, K Gunning and R Mahroof

Thorax published online April 22, 2011

Updated information and services can be found at:
http://thorax.bmj.com/content/early/2011/04/22/thoraxjnl-2011-200092

These include:

References

This article cites 6 articles, 2 of which you can access for free at:
http://thorax.bmj.com/content/early/2011/04/22/thoraxjnl-2011-200092#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Influenza (106)
- TB and other respiratory infections (1273)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/