LETTER

Immunogenicity and safety profile of the monovalent A/H1N1 MF59-adjuvanted vaccine in patients affected by cystic fibrosis

Viral respiratory tract infections may determine lung function deterioration in patients affected by cystic fibrosis (CF). Viruses may have a synergistic action with bacteria to damage the respiratory tract; they may also promote airway bacterial colonisation.1 Influenza virus infection has been described to increase the number of CF pulmonary exacerbations and the incidence of hospitalisation.2 For this reason, vaccination is strongly recommended annually. The immunogenic effect and safety of influenza vaccines in CF children are comparable with that of healthy individuals.3 The reported adverse events after vaccination are mild and not persisting. In 2009, a novel swine influenza A virus (A/H1N1) was identified. To date, the outcome of H1N1 infection has been described only in CF adults,3 and no data are available about the safety and immunogenicity of the A/H1N1 vaccine administered to CF patients. The aim of our study was to evaluate safety and immunogenicity of the monovalent A/H1N1 MF59-adjuvanted surface antigen vaccine administered to CF patients. All patients were assessed for safety and immunogenicity of the vaccine. All CF patients aged 6 months to 26 years and followed at the referral Centre of the Bambino Gesù Children’s Hospital (Rome, Italy) were assessed for eligibility. Exclusion criteria were a contraindication for the influenza vaccine or a previous documented H1N1 virus infection. All subjects received one dose of Foscovir (Novartis) monovalent inactivated pandemic influenza vaccine corresponding to 7.5 μg of haemagglutinin (HA) antigen strain A/California/7/2009 (H1N1)v like strain (X-179A) MF59-adjuvanted between November 2009 and February 2010. The vaccine was administered intramuscularly into the deltoid muscle of the non-dominant arm on day 0. Blood samples were collected on day 0 and on day 21 to assess immunogenicity. Serum antibodies were determined using the haemagglutination inhibition (HI) assay. Sera geometric mean titres (GMT) and ratios (as fold increase) in HI titres of day 21 to day 0 titres were also calculated. Safety data are shown in table 1.

In conclusion, a single 7.5 μg dose of the monovalent A/H1N1 MF59-adjuvanted vaccine results in a high rate of seroconversion in CF patients. These data support the current influenza vaccination strategy. The vaccine is well tolerated and the frequency of adverse events is comparable with literature data regarding other influenza vaccines. However, we studied a small cohort of young patients with an overall good nutritional and lung status. In severe malnourished CF patients, supposed to have a decreased immune response, the vaccine efficacy may not have the same efficacy. Future prospectual studies are needed to evaluate the benefits of influenza vaccines on defined clinical outcomes.

Federico Alghisi,1 Paolo Palma,2 Enza Montemitro,1 Stefania Bernardi,3 Giuseppe Ponnelli,2 Paolo Rossi,2 Vincenzina Lucidi1

1Department of Pediatric Medicine, Unit of Cystic Fibrosis, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy;2University Department of Pediatrics, OPUO, Clinical Trial Center, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy;3University Department of Pediatrics, OPUO, Pediatric Medicine, Unit of Cystic Fibrosis, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy

Correspondence to Vincenzina Lucidi, Department of Pediatric Medicine, Unit of Cystic Fibrosis, Bambino Gesù Children’s Hospital, P.zza S. Onofrio n. 4, 00165 Rome, Italy; vincenzina.lucidi@opbg.net

Competing interests None.

Ethics approval This study was conducted with the approval of the Bambino Gesù Children’s Hospital Ethics Committee.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 25 November 2010


REFERENCES

Table 1 Demographics, immunogenicity and safety data of the study group

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Nutritional status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients:18 years (n=32):</td>
<td>mean HAP 25.1</td>
</tr>
<tr>
<td>Patients:18 years (n=16):</td>
<td>mean BMI 21.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Immunogenicity*</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients:33</td>
<td>21 days postimmunisation</td>
</tr>
<tr>
<td>CD4 T cell/μl (%)</td>
<td>Pain</td>
</tr>
<tr>
<td>Geometric mean titre (95% CI)</td>
<td>Swelling/redness</td>
</tr>
<tr>
<td>Geometric mean ratio of HI titre (95% CI)</td>
<td>Fever</td>
</tr>
<tr>
<td>% Seroconversion (95% CI)</td>
<td>Myalgia</td>
</tr>
<tr>
<td>—</td>
<td>Headache</td>
</tr>
<tr>
<td>—</td>
<td>Fatigue</td>
</tr>
<tr>
<td>—</td>
<td>Chills</td>
</tr>
</tbody>
</table>

*Immunogenicity was assessed according to the CPMP criteria: seroconversion was defined as prevaccination antibody titre of 1:10 or less and a postvaccination titre of 1:40 or more or a prevaccination titre greater than 1:10 and an increase in the antibody titre by a factor of four or more. Seroconversion rate was calculated as the percentage of patients that displayed seroconversion. Serum antibody titres were determined using the haemagglutination inhibition (HI) assay. Sera geometric mean titres (GMT) and ratios (as fold increase) in HI titres of day 21 to day 0 titres were also calculated.

HAP, height for age percentile; WAP, weight for age percentile; BMI, body mass index; FEV1, forced expiratory volume in 1 s.
Immunogenicity and safety profile of the monovalent A/H1N1 MF59-adjuvanted vaccine in patients affected by cystic fibrosis

Federico Alghisi, Paolo Palma, Enza Montemitro, Stefania Bernardi, Giuseppe Pontrelli, Paolo Rossi and Vincenzina Lucidi

Thorax • published online January 12, 2011

Updated information and services can be found at:
http://thorax.bmj.com/content/early/2011/01/09/thx.2010.156018

These include:

References

This article cites 3 articles, 1 of which you can access for free at:
http://thorax.bmj.com/content/early/2011/01/09/thx.2010.156018#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/