Risk Factors for Complicated Parapneumonic Effusion and Empyema on Presentation to Hospital with Community Acquired Pneumonia
James D Chalmers, Aran Singanayagam, Maeve P Murray, Caroline Scally, Ali Fawzi, Adam T Hill
Royal Infirmary of Edinburgh, Edinburgh, Scotland, United Kingdom.

Corresponding author
Dr James Chalmers
Department of Respiratory Medicine
Royal Infirmary of Edinburgh
51 Little France Crescent
Old Dalkeith Road
Edinburgh
EH16 4SA
E-mail: jamesdchalmers@goolemail.com
Tel: 0131 242 1000

Running title- Predicting complicated parapneumonic effusions

Word Count: 2951 words.

FUNDING SOURCES
No external funding was obtained for this study. Dr Chalmers is supported by a Clinical Research Training Fellowship from the Medical Research Council.
ABSTRACT

BACKGROUND

The aim of this study was to identify key factors on admission predicting the development of complicated parapneumonic effusion or empyema in patients admitted with community acquired pneumonia.

METHODS

We conducted a prospective observational study of patients admitted with community acquired pneumonia in NHS Lothian, UK. We used multivariate regression analyse to evaluate factors that could predict the development of complicated parapneumonic effusion or empyema including admission demographics, clinical features, laboratory tests, pneumonia specific (PSI, CURB65 and CRB65) and generic sepsis scoring systems (APACHE II, SEWS, SIRS).

RESULTS

1269 patients were included in the study and 92 patients (7.2%) developed complicated parapneumonic effusion or empyema. The pneumonia specific and generic sepsis scoring systems had no value in predicting complicated parapneumonic effusion or empyema. Multivariate logistic regression identified albumin <30g/L adjusted odds ratio (AOR) 4.55 (95% confidence interval 2.45-8.45,p<0.0001), sodium <130mmol/l AOR 2.70 (1.55-4.70,p=0.0005), platelet count >400×10^9/L AOR 4.09 (2.21-7.54,p<0.0001), C-reactive protein >100mg/l AOR 15.7 (3.69-66.9,p<0.0001) and a history of alcohol abuse AOR 4.28 (1.87-9.82,p=0.0006) or intravenous drug use AOR 2.82 (1.09-7.30,p=0.03) as independently associated with development of complicated parapneumonic effusion or empyema. A history of COPD was associated with decreased risk AOR 0.18 (0.06-0.53,p=0.002).

A 6 point scoring system using these combined variables had good discriminatory value AUC 0.84 (95% confidence interval 0.81-0.86,p<0.0001).

CONCLUSION

This study has identified 7 clinical factors predicting the development of complicated parapneumonic effusion or empyema. Independent validation is needed.

ABSTRACT WORD COUNT – 235 words.

KEYWORDS: Pleural Empyema; Community Acquired Pneumonia; Complicated Parapneumonic Effusion; Severity Scores
INTRODUCTION
Complicated parapneumonic effusions and empyema are key complications of community acquired pneumonia necessitating prolonged treatment, intercostal drainage and frequently surgical management leading to prolonged hospital stay.[1-3]

In 1980 Light and colleagues established the criteria that are now used to define complicated parapneumonic effusions but found no reliable clinical or radiological features to predict which patients with community acquired pneumonia will develop complicated parapneumonic effusions or empyema.[4] Only small studies have been available to date.

Pneumonia severity scores including CURB65, CRB65 and the Pneumonia Severity Index [5-9] have been used on admission to predict 30-day mortality but none to date have studied their utility to predict the development of complicated parapneumonic effusion or empyema.

The aim of this study was to identify key factors predicting the development of complicated parapneumonic effusion or empyema in patients admitted with community acquired pneumonia.
METHODS
We prospectively identified all patients, admitted between January 2005 and January 2008 to NHS Lothian UK, with a primary diagnosis of community acquired pneumonia. Ethical approval was obtained from the Lothian research ethics committee.

The inclusion criteria and study protocol have been described previously.[9] Exclusion criteria were hospital acquired pneumonia (development of symptoms >48 hours after admission to hospital or discharge from an acute care facility within 14 days of admission); active thoracic or extrathoracic malignancy; metastatic infection from a non-pulmonary source; immunosuppression (including patients prescribed long term prednisolone, methotrexate, azathioprine or anti-TNF alpha therapy); solid organ transplant; previous empyema or chronic pleural effusion due to a cause other than pneumonia; recent thoracic surgery; patients for whom active treatment is not considered appropriate (e.g palliative care).

Identification of Parapneumonic Effusions
All patients had a standard chest radiograph within 24 hours of admission and this was repeated if clinically indicated. All patients with pleural effusions underwent clinical assessment and thoracic ultrasound if required. All patients with pleural effusion underwent thoracocentesis, except in small pleural effusions thought unsafe for pleural aspiration from thoracic ultrasound. Fluid was analysed for pH, protein, lactate dehydrogenase, glucose, gram stain, culture and cytology. In patients with empyema too viscous to analyse the sample was sent for gram stain and microbiological culture only.

Definition of Complicated Pneumonia and Empyema
The primary outcome was development of complicated parapneumonic effusion or empyema. Complicated parapneumonic effusion was defined according to the criteria described by Light and colleagues [4] as at least one of pleural fluid pH < 7.2, LDH >1,000iu/l or glucose <2.2mmol/l. Empyema was defined as frank pus aspirated from the pleural space or positive gram stain/culture for pathogenic organisms.

For the purposes of comparison, early development of complicated parapneumonic effusion/empyema was defined as diagnosis ≤72 hours after admission to hospital. Late development of empyema was defined as diagnosis >72 hours after admission. The date of diagnosis of empyema was taken to be the date of the confirmatory thoracocentesis.

Severity Scores
We evaluated factors that could predict the development of complicated parapneumonic effusion or empyema including admission demographics, clinical features, laboratory tests, and severity scores. The pneumonia specific scores included the Pneumonia Severity Index[7], CURB65[5] and CRB65[5]. The generic sepsis scores included the APACHE II score[10], SIRS criteria[11] and SEWS (Scottish Early Warning System) Score.[12] For the purposes of calculating the values of predictive tests the following were used to define “severe” for each scoring system, PSI > 4; CURB65 ≥ 3; CRB65 ≥ 3; SIRS -Severe sepsis or Septic shock; SEWS > 4; APACHE II- The APACHE score is a progressive scale with increasing estimated death rates for increasing scores. For purposes of comparison in this study “severe”
was arbitrarily set at > 9 points prior to the study which equates to a >9.9% risk of death.

Statistical Analysis
Demographic, clinical, laboratory, radiological and other variables were converted to binary variables based on cut-points identified in the community acquired pneumonia literature, primarily studies focussing on mortality. The relative risks were expressed as adjusted odds ratios (AOR) and 95% confidence intervals (CI). All variables that were statistically significant in the univariate analysis with a P value < 0.05 were entered in a multivariable model with a stepwise approach. Multicollinearity was assessed by using bivariate linear regression between variables and using the variance inflation factor. A variance inflation factor of less than 2.5 was regarded as excluding significant interactions.[13]

The value of tests for predicting outcomes was compared using the area under the receiver operator characteristic curve (AUC).[14] For interpretation of these values the following is widely accepted- AUC 0.50-0.59= no value of test; 0.60-0.69= poor discriminatory value; 0.70-0.79= moderate discriminatory value; 0.80-0.89= good discriminatory value; 0.90-1.00= excellent discriminatory value.

The chi-square (χ^2) test was used to compare categorical variables and for continuous variables the Mann-Whitney U test was used for two groups. Data is presented as number (percentage) or median (interquartile range). A p value of <0.05 was considered statistically significant for each analysis.
RESULTS
1628 patients were considered for inclusion and 359 patients were excluded (see Figure 1). 1269 patients were therefore included in the study. 92 patients (7.2%) met the criteria for complicated parapneumonic effusion (74 patients- 5.8%) or empyema (18 patients- 1.4%).

Figure 1- Method of identification of cases of complicated parapneumonic effusion and empyema.

Baseline characteristics and co-morbidities of the study population are shown in Table 1. Pleural fluid characteristics were as follows for patients developing complicated parapneumonic effusion or empyema: median pH 7.1 (interquartile range 7.0-7.2); glucose 1.0mmol/l (0.6-2.5), Protein 40g/l (35-46); LDH 2900iu/l (1035-4720).

Table 1- Baseline characteristics of the study population. (CPE/Emp=complicated parapneumonic effusion or empyema). COPD= Chronic Obstructive Pulmonary Disease. *p-value is derived from comparison between patients with CPE/Emp and patients with uncomplicated pneumonia using the chi-square (χ^2) test except for age (Mann-Whitney U test).

<table>
<thead>
<tr>
<th>BASELINE CHARACTERISTICS AND CO-MORBIDITIES</th>
<th>Study population</th>
<th>CPE/Emp</th>
<th>Uncomplicated Pneumonia</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1269</td>
<td>92</td>
<td>1177</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>66 (51-78)</td>
<td>57 (41-68)</td>
<td>67 (51-78)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Gender (% male)</td>
<td>49.2%</td>
<td>57.6%</td>
<td>48.5%</td>
<td>0.1</td>
</tr>
<tr>
<td>Chronic Cardiac Disease</td>
<td>19.1%</td>
<td>9.8%</td>
<td>19.8%</td>
<td>0.02</td>
</tr>
<tr>
<td>Liver Disease</td>
<td>5%</td>
<td>10.9%</td>
<td>4.6%</td>
<td>0.009</td>
</tr>
<tr>
<td>Neurological Disease</td>
<td>11.1%</td>
<td>2.2%</td>
<td>11.8%</td>
<td>0.01</td>
</tr>
<tr>
<td>Chronic Renal Failure</td>
<td>6%</td>
<td>6.5%</td>
<td>5.9%</td>
<td>0.8</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>10.2%</td>
<td>6.5%</td>
<td>10.5%</td>
<td>0.2</td>
</tr>
<tr>
<td>COPD</td>
<td>20.3%</td>
<td>4.3%</td>
<td>21.5%</td>
<td>0.0005</td>
</tr>
<tr>
<td>Chronic Alcohol Abuse</td>
<td>5.5%</td>
<td>13%</td>
<td>4.9%</td>
<td>0.002</td>
</tr>
<tr>
<td>Intravenous Drug Use</td>
<td>3%</td>
<td>10.9%</td>
<td>2.4%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Current Smokers</td>
<td>34.2%</td>
<td>44.6%</td>
<td>33.4%</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Microbiology of Empyema
16/92 patients had a positive pleural fluid culture. Streptococcus milleri group (S.intermedius, S.constellatus, S.mitis) were the most frequent organisms isolated in 6 cases. Streptococcus pneumoniae was isolated in 2 cases and other Streptococci were isolated in 4 cases. 2 samples grew anaerobic organisms. Staphylococcus aureus and Enterobacteriaceae were isolated in a single case. 92 patients (100%) had received antibiotic therapy prior to pleural aspiration. The organisms isolated are shown in figure 2.

Figure 2- Microbiology of empyema.
Outcomes in patients with and without complicated parapneumonic effusion or empyema

Patients with complicated parapneumonic effusion or empyema had longer length of stay and higher rates of intensive care unit admission compared to patients without these complications. The 30-day mortality rate was not significantly different between groups—table 2.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Complicated parapneumonic effusion/empyema</th>
<th>No complicated parapneumonic effusion/empyema</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Stay (days)</td>
<td>16 (11-26)</td>
<td>5 (2-10)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Intensive Care Unit Admission</td>
<td>21.7%</td>
<td>7.7%</td>
<td><0.0001</td>
</tr>
<tr>
<td>30-day Mortality</td>
<td>8.7%</td>
<td>8.4%</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Table 2- Outcomes in patients with complicated parapneumonic effusion or empyema. p-values refer to comparisons between patients with and without complicated parapneumonic effusion and empyema using the chi-square (χ²) test except for length of stay (Mann-Whitney U test).

92 patients (100%) meeting the criteria for complicated parapneumonic effusion or empyema had an intercostal drain inserted for drainage of their effusion. Intrapleural fibrinolytics were not used. 18 patients failed to improve with chest tube drainage and subsequently required surgical thoracotomy. 2 of these patients died within 30-days of admission. A further 6 patients died within 30-days that did not receive thoracotomy. 24 patients (22%) were therefore categorised as failure of medical treatment.

Recognised Severity Scores

Recognised severity scores were compared for their ability to predict the development of complicated parapneumonic effusion or empyema. All had low area under the receiver operator characteristic curves for the prediction of complicated parapneumonic effusion and empyema see figure 3 and Table 3.

The positive predictive value, negative predictive value, sensitivity, specificity and area under the curve for each rule is shown in Table 3.

<table>
<thead>
<tr>
<th>Prediction Tool</th>
<th>PPV</th>
<th>NPV</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>AUC (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia Severity Index</td>
<td>8.8%</td>
<td>94.2%</td>
<td>57.6%</td>
<td>53.4%</td>
<td>0.55 (0.52-0.58)</td>
<td>0.1</td>
</tr>
<tr>
<td>CURB65 Score</td>
<td>7.5%</td>
<td>92.9%</td>
<td>33.7%</td>
<td>67.5%</td>
<td>0.54 (0.51-0.57)</td>
<td>0.2</td>
</tr>
<tr>
<td>CRB65 Score</td>
<td>4.4%</td>
<td>92.2%</td>
<td>9.8%</td>
<td>83.5%</td>
<td>0.52 (0.49-0.55)</td>
<td>0.5</td>
</tr>
<tr>
<td>APACHE II score</td>
<td>5.7%</td>
<td>90.2%</td>
<td>47.8%</td>
<td>37.7%</td>
<td>0.41 (0.38-0.44)</td>
<td>0.002</td>
</tr>
<tr>
<td>SIRS</td>
<td>8.2%</td>
<td>92.9%</td>
<td>15.2%</td>
<td>86.7%</td>
<td>0.57 (0.54-0.60)</td>
<td>0.03</td>
</tr>
<tr>
<td>Early Warning Score</td>
<td>7.9%</td>
<td>93.2%</td>
<td>45.7%</td>
<td>58.2%</td>
<td>0.53 (0.50-0.56)</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Table 3- Severity scores and prediction of complicated pneumonia. PPV= positive predictive value; NPV= negative predictive value; AUC= Area under the receiver operator characteristic curve; SIRS= Systemic Inflammatory Response Syndrome. *p-value refers to comparison between ROC curve and the null hypothesis.
Figure 3- Receiver operator characteristic curves for widely used severity scores and development of complicated parapneumonic effusion or empyema.

Prediction of Development of Complicated Parapneumonic Effusion or Empyema

Complete clinical data were available for all patients with the exception of arterial blood gas measurements which were not performed in all patients and so were not included in the multivariate analysis.

On multivariate logistic regression, low serum albumin <30g/l, elevated C-Reactive Protein >100mg/l and platelet Count >400 x 10^9/L, low serum sodium <130mmol/l, intravenous drug use or chronic alcohol abuse were all identified as independent predictors of the subsequent development of complicated parapneumonic effusion or empyema. A history of chronic obstructive pulmonary disease was associated with decreased risk. (Table 4) No strong correlations were identified between predictors. No VIF was >2.5 and the average VIF was 1.03.

<table>
<thead>
<tr>
<th>Clinical Feature</th>
<th>N</th>
<th>% CPE/Emp</th>
<th>% Uncomplicated pneumonia</th>
<th>Adjusted Odds Ratio (95% Confidence Intervals)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin <30g/L</td>
<td>144</td>
<td>38.0%</td>
<td>9.3%</td>
<td>4.55 (2.45-8.45)</td>
<td><0.0001</td>
</tr>
<tr>
<td>C-Reactive Protein >100mg/L</td>
<td>948</td>
<td>97.8%</td>
<td>72.9%</td>
<td>15.7 (3.69-66.9)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Platelet Count >400 x 10^9/L</td>
<td>157</td>
<td>31.5%</td>
<td>10.9%</td>
<td>4.09 (2.21-7.54)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Sodium <130mmol/L</td>
<td>105</td>
<td>19.6%</td>
<td>7.4%</td>
<td>2.70 (1.55-4.70)</td>
<td>0.0005</td>
</tr>
<tr>
<td>Intravenous Drug Use</td>
<td>38</td>
<td>10.9%</td>
<td>2.4%</td>
<td>2.82 (1.09-7.30)</td>
<td>0.03</td>
</tr>
<tr>
<td>Chronic Alcohol Abuse</td>
<td>70</td>
<td>13%</td>
<td>4.9%</td>
<td>4.28 (1.87-9.82)</td>
<td>0.0006</td>
</tr>
<tr>
<td>Chronic Obstructive Pulmonary Disease</td>
<td>257</td>
<td>4.3%</td>
<td>21.5%</td>
<td>0.18 (0.06-0.53)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Table 4- Clinical Predictors of Development of Complicated Parapneumonic Effusion or Empyema- final multivariate model.

Clinical Application of the Data

A scoring system was developed to assess if the identified “risk factors” for development of complicated parapneumonic effusion or empyema could be applied clinically. Each risk factor identified in the multivariate analysis that predicts complicated parapneumonic effusion or empyema (Table 5) was given a numerical value (+1 point). 1 point was subtracted for the presence of COPD. The incidence of complicated parapneumonic effusion or empyema according the number of risk factors is shown in Table 5.
Table 5 - Risk stratification using a derived score for prediction of complicated parapneumonic effusion or empyema. *Chi square test, p<0.0001.

<table>
<thead>
<tr>
<th>Points</th>
<th>CPE/EMP</th>
<th>Uncomplicated Pneumonia</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>296</td>
<td>0.003</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>442</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>38</td>
<td>283</td>
<td>11.8</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>81</td>
<td>25.7</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>7</td>
<td>63.2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>50*</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Although in theory this was a 6 point score, in practice no patients had the maximum of 6 points. The resultant scoring system was analysed using area under the receiver operator characteristic curve. There appeared to be a clear separation between patients with 1 point (2.4%) and patients with higher scores (11.8% and increasing) and so performance characteristics were calculated with these values representing high and low risk of developing complicated parapneumonic effusion and empyema.

For predicting complicated parapneumonic effusion or empyema, using ≥2 point as the cut-off, the Sensitivity is 87.0%, specificity is 68.3%, positive predictive value is 17.7%, negative predictive value is 98.5% and Area under the receiver operator characteristic curve is 0.84 (0.81-0.86), p<0.0001 (Figure 4). This score was superior to all of severity scores in Table 3 for prediction of complicated parapneumonic effusion or empyema (p<0.0001 for all analyses).

Early versus Late Complicated Parapneumonic Effusion/Empyema

22 patients (24%) had the diagnosis of complicated parapneumonic effusion or empyema made within 72 hours of admission. The AUC for the derived score was 0.86 (0.81-0.91) for prediction of early complicated parapneumonic effusion/empyema and the AUC was 0.83 (0.80-0.86) for prediction of late complicated parapneumonic effusion/empyema.
Discussion

This study has identified seven key features that can identify patients at risk of development of complicated parapneumonic effusion or empyema. Low serum albumin <30g/l, C-reactive protein >100mg/l, platelet count >400 x 10^9/L, serum sodium <130mmol/l, intravenous drug use and chronic alcohol abuse were all identified as independent predictors of the subsequent development of complicated parapneumonic effusion or empyema. A history of chronic obstructive pulmonary disease was found to be associated with decreased risk.

Using this information, this study has provided proof of the concept that complicated parapneumonic effusion and empyema can be predicted by deriving a scoring system with good predictive value. The presence of 2 or more of the above risk factors has a 87% sensitivity for detection of complicated parapneumonic effusion or empyema and a score of <2 gives a negative predictive value of 98.5%. The scoring system had “good” performance characteristics for predicting both early and late parapneumonic effusion and empyema. This scoring system now requires independent validation.

Although in univariate analysis, patients with complicated parapneumonic effusion and empyema were younger, more likely to be male and more likely to be current smokers, these differences were not significant in the multivariate analysis.

The risk factors identified in this study are supported by the existing literature. Alcohol abuse is the most common disorder reported in patients with empyema.[15,16] Aspiration of gastric contents and the failure to seek prompt medical attention are two mechanisms that have been proposed to explain this. This may also in part explained the increased incidence of patients with a history of intravenous drug use. There is strong evidence that inflammatory markers are elevated in patients with parapneumonic effusions and empyema, as pleural inflammation is the characteristic feature of these diseases.[17] In the present study C-Reactive protein >100mg/L was strongly associated with the development of empyema or complicated parapneumonic effusion. It is well recognised that patients with an elevated C-Reactive protein on admission that fails to fall with treatment are at increased risk of complicated parapneumonic effusion or empyema.[18-20] Elevated platelet count is also well recognised in acute and chronic infections.[21] Empyema is a recognised cause of the syndrome of inappropriate ADH secretion[22], but hyponatraemia is also recognised in severe community acquired pneumonia without syndrome of inappropriate ADH.[23] Hypoalbuminaemia is well recognised in severe community acquired pneumonia as well as being associated with the development of empyema.[7,23,24]

The finding that patients with chronic obstructive pulmonary disease was associated with a decreased risk of complicated parapneumonic effusion and empyema is intriguing. There are compelling reasons to believe that patients with COPD should have increased mortality from pneumonia but prognostic studies to date have found that this is not the case.[7,23] Authors have speculated that the local pulmonary inflammation present in patients with COPD may produce a dampened response when exposed to an acute bacterial challenge.[25] The acute administration of steroids is another important potential confounding factor. Steroids have potent effects on attenuating pulmonary and systemic inflammation[26] and may also attenuate pleural inflammation.
The widely used pneumonia severity and sepsis severity scores considered in this study were not found to be useful for predicting the development of complicated parapneumonic effusion or empyema. The clinical features that predispose to 30-day mortality from pneumonia are clearly different to those identified in this study to predispose to the development of complicated parapneumonic effusion or empyema. Of the risk factors identified in this study, only hypoalbuminaemia, hyponatraemia and an elevated C-reactive protein have been identified as independent risk factors for mortality, and none of these are among the “core” high risk features carrying the greatest risk of death.

This study found that *Streptococcus milleri* group was the most frequently isolated organism in patients with empyema, followed by other streptococci. This is consistent with the findings of the UK trial of intrapleural streptokinase and a recent study of patients with community acquired pleural infection from Canada.[27,28] 82% of patients, however, had no organisms cultured. The frequency of positive microbiological diagnosis in this study is lower than in many other published studies of empyema, which have reported a microbiological diagnosis in between 40% and 60% of cases.[29-32] Several factors may account for this, first many of these studies have reported positive blood cultures in addition to positive fluid microbiology[29] rather than simply positive pleural fluid cultures, which it the case in this study. Many studies have focussed exclusively on empyema and consequently reported a much higher incidence of patients with frankly purulent effusions[27-30], which may be more likely to give a positive result. In addition, prior antibiotic therapy is likely to play a role, as empirical therapy in CAP covers the majority of potential organisms, whereas in other studies, the aetiology of empyema is variable and it cannot be said with certainty whether empirical therapy was effective against the organisms isolated.

Limitations

Although the clinical assessment of patients in this study was comprehensive, 27 patients had pleural effusions that were not sampled, because thoracic ultrasound indicated insufficient pleural fluid to tap safely. As all patients were followed up, we feel that it unlikely that clinical important cases of pleural infection were missed.

This study represents a large cohort of patients with community acquired pneumonia, the number developing the outcome of interest (92 patients in total) were relatively small, and this is reflected in the wide confidence intervals for some of the individual predictors. Multicentre studies would be required to define the relative risks more accurately.

Although the performance of the derived predictive score is defined as “good” (AUC 0.84) in our study population, prospective validation is required before any recommendations can be made about its use in clinical practice.

Conclusion

There are important differences in the presentation of patients with complicated parapneumonic effusion and empyema compared to patients with uncomplicated community acquired pneumonia. Pneumonia and generic sepsis scores do not predict the development of these complications but a simple 6 point scoring system can allow identification of high risk patients. Independent validation studies are needed.

LICENCE

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in THORAX and any other BMJPG products to exploit all subsidiary rights.
Patients with respiratory tract infections screened for inclusion: 1628

Patients Admitted to Hospital with a Confirmed Diagnosis of Community Acquired Pneumonia on chest radiograph: 1269

Pleural effusion: 260

Thoracocentesis performed in patients presenting with, or subsequently developing, pleural effusion

Frank pus aspirated or positive pleural fluid culture: Confirmed Empyema: 18

Pleural fluid pH < 7.2, glucose < 2.2mmol/l, or LDH > 1000 iu/l: Complicated Parapneumonic Effusion: 74

No ultrasound evidence of pleural fluid or too small to safely tap: 27

No Pleural effusion: 1009

Follow up to 180 days

No Evidence of Pleural Infection: 1036

EXCLUSIONS
Hospital acquired pneumonia 74
Malignancy 98
Immunosuppression 52
Solid organ transplant 2
Palliative care 19
Follow-up diagnosis not pneumonia 84
Malignant effusion 18
Previous empyema or recent thoracic surgery 10
Pulmonary Tuberculosis 2
Microbiology of Empyema

No organism identified 82%

- Enterobacteriaceae 1%
- Staphylococcus aureus 1%
- Anaerobic Bacteria 2%
- Other Streptococci 5%
- Streptococcus milleri group 7%
- Streptococcus pneumoniae 2%
Receiver Operator Characteristic Curve for Prediction of Complicated Parapneumonic Effusion or Empyema

- Pneumonia Severity Index
- CURB65
- CRB65
- APACHE II
- SIRS criteria
- Scottish Early Warning Score
- ROC = 0.50
Receiver Operator Characteristic Curves for Prediction of Complicated Parapneumonic Effusion or Empyema
Risk Factors for Complicated Parapneumonic Effusion and Empyema on Presentation to Hospital with Community Acquired Pneumonia

James D Chalmers, Aran Singanayagam, Caroline Scally, Ali Fawzi, Maeve P Murray and Adam T Hill

Thorax published online January 8, 2009

Updated information and services can be found at: http://thorax.bmj.com/content/early/2009/01/08/thx.2008.105080

Email alerting service

These include: Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Pneumonia (infectious disease) (579)
- Pneumonia (respiratory medicine) (562)
- TB and other respiratory infections (1273)
- Inflammation (1020)
- Airway biology (1100)
- Health education (1223)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/