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AbsTrACT 
background all lung cancer ct screening trials used 
fixed follow-up intervals, which may not be optimal. We 
developed new lung cancer risk models for personalising 
screening intervals to 1 year or 2 years, and compared 
these with existing models.
Methods We included participants in the ct arm of 
the national lung Screening trial (2002–2010) who 
underwent a baseline scan and a first annual follow-up 
scan and were not diagnosed with lung cancer in the 
first year. true and false positives and the area under the 
curve of each model were calculated. internal validation 
was performed using bootstrapping.
results Data from 24 542 participants were included 
in the analysis. the accuracy was 0.785, 0.693, 
0.697, 0.666 and 0.727 for the polynomial, patient 
characteristics, diameter, Patz and Pancan models, 
respectively. Of the 24 542 participants included, 174 
(0.71%) were diagnosed with lung cancer between 
the first and the second annual follow-ups. Using the 
polynomial model, 2558 (10.4%, 95% ci 10.0% to 
10.8%), 7544 (30.7%, 30.2% to 31.3%), 10 947 
(44.6%, 44.0% to 45.2%), 16 710 (68.1%, 67.5% to 
68.7%) and 20 023 (81.6%, 81.1% to 92.1%) of the 
24 368 participants who did not develop lung cancer in 
the year following the first follow-up screening round 
could have safely skipped it, at the expense of delayed 
diagnosis of 0 (0.0%, 0.0% to 2.7%), 8 (4.6%, 2.2% to 
9.2%), 17 (9.8%, 6.0% to 15.4%), 44 (25.3%, 19.2% 
to 32.5%) and 70 (40.2%, 33.0% to 47.9%) of the 174 
lung cancers, respectively.
Conclusions the polynomial model, using both 
patient characteristics and baseline scan morphology, 
was significantly superior in assigning participants 
to 1-year or 2-year screening intervals. implementing 
personalised follow-up intervals would enable hundreds 
of participants to skip a screening round per lung cancer 
diagnosis delayed.

InTroduCTIon
The US National Lung Screening Trial (NLST) is the 
only lung cancer screening trial to date which has 
shown a significant decrease in lung cancer mortality 
using CT compared with chest radiography.1 In the 
CT arm of the trial, participants underwent three 
CT scans at 1-year intervals. However, only 0.7% 
of the CT arm participants screened in the first 
follow-up round of the study were diagnosed with 
cancer within a year, as compared with 1.0% for 
the baseline CT screening. In fact, there is currently 
no strong evidence to promote annual over biennial 

follow-up screening intervals; the latter would 
substantially reduce costs, radiation burden and 
radiologists' workload.2 However, considering the 
large intraparticipant variation and lung cancer 
heterogeneity, a one-size-fits-all strategy is likely to 
be suboptimal.3

There are currently published models which 
attempt to determine the most efficient screening 
eligibility criteria or the chance that a nodule is 
cancerous.4–6 However, to the best of our knowl-
edge, only Patz and colleagues attempted to 
procure the ideal follow-up interval per participant 
following a baseline scan, though their model was 
simple and only had one risk threshold.7 Using their 
model, 18 059 unnecessary scans at the first annual 
follow-up screening round (T1) could have been 
avoided at the expense of delaying the diagnosis of 
lung cancer in 62 participants.

We therefore developed a model to predict the 
individual risk for participants not diagnosed with 
lung cancer in the year following a baseline scan, 
to be diagnosed with lung cancer between 1 year 
and 2 years after the baseline, that is, in the year 
following the first annual follow-up CT scan. With 
such a model, an optimal subset of screening partic-
ipants could be selected for biannual screening.

MeThods
A detailed report of the methods can be found in 
the online supplementary appendix.

Key messages

What is the key question?
 ► In a lung cancer CT screening setting, who 
should be allowed to safely skip the first annual 
follow-up screening round?

What is the bottom line?
 ► Implementation of personalised follow-up 
intervals could noticeably reduce screening 
programme costs, radiation exposure and 
radiologist workload.

Why read on?
 ► Besides demonstrating the superiority of 
new risk prediction models based on 24 542 
National Lung Screening Trial participants, the 
potential trade-offs between allowing many 
cancer-free participants to skip a screening 
round and delaying the lung cancer diagnosis in 
some is discussed.
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Participant and scan data
In short, NLST was a randomised controlled trial performed at 
33 centres in the USA which enrolled 53 454 people with a high 
lung cancer risk, of which 26 722 were assigned to the spiral 
low-dose CT arm and 26 732 to the chest radiography (control) 
arm.1 The primary outcomes were lung cancer mortality and 
overall mortality. The main inclusion criteria were an age 
between 55 years and 74 years, a minimum of 30 pack-years of 
smoking, and, if applicable, had quit smoking less than 15 years 
previously. The trial took place between 2002 and 2010: the 
participants were screened in three annual rounds—one base-
line (T0) and two annual follow-ups (T1 and T2, respectively)—
and were followed for another 5 years. A participant received a 
‘positive’ screening outcome if at least one non-calcified pulmo-
nary nodule with a diameter of 4 mm or larger was detected 
in the CT scan. Out of the 24 715 participants screened in T1, 
7191 (27.3%) tested positive of which only 168 (2.4%) had a 
confirmed lung cancer diagnosis.

Use of NLST data was approved by the National Cancer 
Institute Cancer Data Access System under study number 267. 
This included participant characteristics and scan outcomes. 
Note that some data were updated since the main results were 
published, resulting in slight differences.1

data selection
Figure 1 shows the participant inclusion process. The require-
ments were that the participant was part of the CT arm, had 
a completed baseline questionnaire, had an adequate scan at 
the baseline screening round (T0) and participated in the first 
yearly follow-up round (T1). The outcome for this study was 
cancer diagnosis in the year following T1. Participants who were 
diagnosed with lung cancer before T1 were excluded from T1 
participation, namely lung cancers diagnosed on the basis of a 
positive T0 outcome (n=267) plus interval cancers diagnosed 
before T1 (n=17).

Predictor variables
Most variables used were left as originally provided in the NLST 
data set; some new variables were created with the purpose 
of isolating the most relevant variables (online supplemen-
tary appendix table 1). For one, when multiple nodules were 
recorded in one scan, only the longest diameter and perpendic-
ular diameter of the longest nodule were considered. Also, a 
nodule characteristic (ie, part solid, non-solid, upper lobe loca-
tion and spiculation) was considered present when any of the 
nodules in the scan had that characteristic. Patient characteris-
tics variables were obtained from participant questionnaires and 
scan variables were reported by individual radiologists. Missing 
data were replaced using multiple imputations.

statistical analysis
Multiple logistic regression was performed using the R statis-
tical analysis package V.3.3.2; five models are reported. For the 
parsimonious polynomial model (subsequently referred to as the 
‘polynomial model’), a bidirectional stepwise multiple logistic 
regression analysis was performed on 17 variables deemed 
important.8 The continuous variables were transformed into 
polynomials to the second power. Only variables which had a 
Pearson's χ2 p value less than 0.20 were included in the parsi-
monious model. The parsimonious patient characteristics model 
(‘patient characteristics model’) analysis was performed on 11 
patient characteristics variables. The diameter and Patz models 
were created using only one variable each: ‘longest nodule diam-
eter’ and ‘negative T0 screen’, respectively. Finally, we applied 
the PanCan model (full model with spiculation) risk scores on 
our data.6 We used bootstrapping to validate the models and 
test for overfitting in order to use all lung cancer cases available 
for developing models.9 10 The 95% confidence intervals (CI) of 
predictive values (sensitivity, specificity, positive predictive value 
and negative predictive value) were calculated using the Wilson 
score method corrected for continuity.11 The Hosmer-Lemeshow 
test was used to test model calibration by determining whether 
the differences between the observed and expected outcomes are 
statistically significant (a p value <0.05 would indicate poor cali-
bration).12 Decision curve analysis was performed as a means to 
evaluate the models by incorporating the consequences of false 
positives and negatives.13

resuLTs
study participants
Inclusion criteria and study set-up of NLST are described 
elsewhere.1

Out of 26 627 persons enrolled in the NLST CT arm, 24 542 
met the inclusion criteria of this study (92.2%). Within this 
group, 174 (0.7%) were diagnosed with cancer within 1 year of 
T1 (figure 1). In more detail, 6845 (27.9%) had a positive T1 
screen, of which 165 (2.4%) were diagnosed with lung cancer; 
9 cancers (0.05%) out of the 17 697 negative T1 screens were 
interval cancers.

Variables for lung cancer prediction
Table 1 displays the distribution of all variables deemed important 
in lung cancer prediction.

The variables included in the polynomial and patient charac-
teristics models and their β coefficients, ORs, and p values are 
listed in table 2; note that the table also shows the variables which 
were not included in the final model (eg, sex, family history of 
lung cancer and prior diagnosis of pneumonia). The variables 
included in the diameter, Patz and PanCan models are described 

Figure 1 Participant selection flow chart. NLST, National Lung 
Screening Trial; T0, baseline screening round; T1, first 1-year follow-up 
screening round.
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in the statistical analysis subsection. Out of all variables used in 
this study, only the variable ‘prior diagnosis of cancer’ had 57 
(0.2%) missing data points, which were replaced using multiple 
imputations.

Model performance
Table 3 shows the hypothetical effect of allowing approximately 
0%, 5%, 10%, 25% and 40% of the participants who were 
diagnosed with lung cancer within 1 year of T1, to skip T1. 
The corresponding percentages of T1 scans avoided (specificity) 
using the polynomial model would be 10.4% (95% CI 10.0% to 
10.8%), 30.7% (30.2 to 31.3%), 44.6% (44.0 to 45.2%), 68.1% 
(67.5 to 68.7%) and 81.6% (81.1% to 82.1%), respectively. 
Sensitivity, positive and negative predictive values, and number 
of scans needed to diagnose one lung cancer case (NND) are also 
reported. Furthermore, the distribution of lung cancer stages at 
the time of diagnosis are reported for those cases in which the 
diagnosis would be delayed.

For example, in the polynomial model, by allowing a fourth 
(25.3%, 19.2% to 32.5%) of the lung cancer diagnoses to be 
delayed (n=44), 68.1% (67.5% to 68.7%) of the participants 
can safely skip T1 (n=16 710). The efficiency improves more 
than twofold, from an NND of 126  to 60. Of the cancer diag-
noses delayed, the distribution of TNM stages I through IV were 
21, 5, 5 and 9, respectively (four were unclassified).

Visualisation of the models in the form of receiver operating 
characteristic (ROC) curves is displayed in figure 2, along with 
the insample area under the curve (AUC) of each model. Table 4 

yields the corresponding bootstrapped AUCs calculated from the 
original samples with the CIs. Our polynomial model showed a 
relatively good predictive performance with an AUC of 0.795 
(bootstrapped AUC 0.785, 95% CI 0.784 to 0.786); the patient 
characteristics and diameter models were significantly inferior 
with AUCs of 0.698 (0.693, 0.692 to 0.693) and 0.697 (0.697, 
0.697 to 0.697), respectively. The Patz and PanCan models 
had AUCs of 0.666 (0.667, 0.667 to 0.667) and 0.727 (0.727, 
0.727 to 0.727), respectively. All of the AUCs calculated from 
the bootstrap samples were approximate to the original sample 
AUCs; the insample AUCs from the polynomial and patient char-
acteristics models were optimistic by 0.010 and 0.005, respec-
tively. Measuring calibration using the Hosmer-Lemeshow test 
showed that the diameter and PanCan models were uncalibrated 
(p<0.001) (online supplementary appendix table 4).

The polynomial model allowed to correctly select 10.4% 
(10.0 to 10.8%) of the participants who remained cancer-free 
1 year after T0 to skip T1 without delaying a single cancer diag-
nosis; this is four times better than the PanCan model (2.7%, 
2.5% to 2.9%) and eight times superior to the patient charac-
teristics model (1.3%, 1.2% to 1.4%). Figure 3 took compo-
nents from the ROC curve in the polynomial model and plotted 
them against the risk threshold. Here, the absolute probabilities 
of true positive (lung cancer diagnosis within 1 year of T1) and 
false positive (no lung cancer within 1 year of T1) rates across 
several risk thresholds are shown.

Despite the polynomial model being superior in terms of 
AUC, the left side of its ROC curve (false positive rates 0.0–0.1) 

Table 1 Distribution of variables in the NLST data set

Variable
no cancer diagnosed as a result of 
T1 scan (n=24 368)

Lung cancer diagnosed as a result 
of T1 scan (n=174) P values* Total (n=24 542)

Positive T1 screen (%) 6680 (27.4) 165 (94.8) <0.001 6845 (27.9)

Patient characteristics

  Age, mean (SD), years 61.4 (5.0) 63.9 (5.1) <0.001 61.4 (5.0)

  Sex, female (%) 9952 (40.8) 70 (40.2) 0.870 10 022 (40.8)

  Lung cancer in family (%) 5283 (21.7) 44 (25.3) 0.250 5327 (21.7)

  History of cancer (%) 969/24311 (4.0) 12/174 (6.9) 0.051 981/24485 (4.0)

  Smoking status, active (%) 11 486 (47.1) 100 (57.5) 0.007 11 586 (47.2)

  Pack-years, mean (SD), pack-years 55.7 (23.8) 66.6 (26.9) <0.001 55.8 (23.8)

  Smoking duration, mean (SD), years 39.7 (7.3) 44.1 (7.4) <0.001 39.7 (7.3)

  Quit duration, mean (SD), years 3.8 (5.0) 2.7 (4.3) 0.004 3.8 (5.0)

  History of COPD (%) 1203 (4.9) 17 (9.8) 0.003 1220 (5.0)

  Prior diagnosis of pneumonia (%) 5391 (22.1) 44 (25.6) 0.317 5435 (22.1)

  Occupational exposure to asbestos (%) 1110 (4.6) 13 (7.5) 0.067 1123 (4.6)

T0 scan findings

  Emphysema on scan (%) 7450 (30.6) 75 (43.1) 0.002 7525 (30.7)

  Longest nodule diameter, mean (SD), mm 7.7 (5.7) 12.2 (12.0) <0.001 7.8 (5.9)

  Longest perpendicular diameter, mean (SD), mm 5.8 (3.8) 9.5 (10.8) <0.001 5.9 (4.0)

  Presence of a non-solid nodule (%) 975 (4.0) 18 (10.3) <0.001 993 (4.0)

  Presence of a part solid nodule (%) 326 (1.3) 15 (8.6) <0.001 341 (1.4)

  Presence of a nodule in upper lobe (%) 2344 (9.6) 58 (33.3) <0.001 2402 (9.8)

  Presence of a spiculated nodule (%) 614 (2.5) 24 (13.8) <0.001 638 (2.6)

  Number of additional nodules, mean (SD), nodules 0.14 (0.59) 0.41 (0.79) <0.001 0.14 (0.59)

Slashes are used to show the total number of participants when there are missing data, with the total on the right.
*Unpaired t-test for continuous variables; N-1 χ2 test for binary variables.
NLST, National Lung Screening Trial; T0, baseline screening round; T1, first 1-year follow-up screening round.
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converges with those from the diameter and PanCan models, 
signifying that their predictive performance for higher risk 
participants are equivalent.

The Patz model, based on the binary variable ‘T0 screening 
outcome,’ only includes one point on the graph. We replicated 
this model, which resulted in avoiding 18 052 (73.6%, 72.8 
to 73.9) 1-year follow-up scans at the expense of delaying 71 
(40.8%, 33.5% to 48.5%) diagnoses. The disadvantage is that 
only one threshold exists which is inferior to the parsimonious 
and polynomial models.

The AUCs of the patient characteristics and diameter models 
were very similar despite each having peak performances at 
different risk levels.

Lung cancer staging
Table 3 includes the American Joint Committee on Cancer 
seventh edition cancer TNM staging distribution of the hypo-
thetically delayed diagnoses. About a third of the delayed diag-
noses would have been staged TNM III or IV. In other words, 
these participants seemingly developed a late-stage cancer within 
1 year after nothing suspicious was discovered at T0.

To investigate this, an experienced radiologist, ETS, attempted 
to locate the cancers on the T1 scans based on the data provided. 
If a lesion was confidently identified as a malignancy, the same 
location on the corresponding T0 scan of the same participant 
was checked. Out of the 25 stage III and IV cancers which would 
have had delayed diagnoses at a 50% sensitivity threshold using 

the polynomial model, 18 were confidently identified in the T1 
scans, of which 8 were already visible and larger than 4 mm in 
the T0 scan (2 more were retraceable but smaller than 4 mm). 
Hence, at least 32.0% of the late-stage lung cancer diagnoses 
could have been diagnosed a year earlier but were missed or 
deemed benign.

dIsCussIon
With the aim of personalising follow-up intervals in lung cancer 
screening programmes, we created and compared prediction 
models for lung cancer diagnosis between 1 year and 2 years 
after a CT scan, based on a large high-risk CT screening cohort.

Our results show that there is indeed room for efficiency 
improvement after establishing screening programme eligibility 
criteria. By individualising follow-up intervals after the baseline 
CT scan using patient characteristics and baseline CT scan find-
ings, the number of superfluous 1-year follow-up scans can be 
reduced. However, the number of saved follow-up CTs need to 
be balanced against the number of delayed diagnoses.

ModeL-sPeCIFIC dIsCussIon
Polynomial model
The polynomial model is the model with the best overall 
performance reported in this study (figure 2, table 4), with the 
more specific clinical consequences being displayed in figure 3 
and table 3. Though not mentioned here, a base parsimonious 

Table 2 Parsimonious polynomial model versus patient characteristics model variables

Predictor variables

Polynomial model Patient characteristics model

or (95% CI) P values β coefficient or (95% CI) P values β coefficient

Model constant N/A N/A −28.15 N/A N/A −10.44

Age, per year 1.79 (0.88 to 3.93) 0.110 0.5845 1.06 (1.02 to 1.11) 0.005 0.05895

Age2, per year2 1.00 (0.99 to 1.00) 0.158 −0.004026 N/A N/A N/A

Gender, female N/A N/A N/A – – – 

Lung cancer in family – – – – – – 

Prior diagnosis of cancer 1.74 (0.88 to 3.02) 0.062 0.5555 1.67 (0.84 to 2.87) 0.082 0.5131

Smoking status, active 1.66 (1.22 to 2.28) 0.001 0.5046 – – – 

Pack-years, per pack-year 1.04 (1.02 to 1.07) <0.001 0.03922 1.01 (1.00 to 1.01) 0.001 0.008342

Pack-years2, per pack-year2 1.00 (1.00 to 1.00) 0.013 −1.632×10–4 N/A N/A N/A

Smoking duration, per year – – – 1.03 (1.00 to 1.07) 0.068 0.03260

Quit duration, per year – – – 0.96 (0.92 to 1.01) 0.103 −0.03875

Prior diagnosis of COPD 1.51 (0.85 to 2.46) 0.110 0.4144 1.69 (0.96 to 2.71) 0.038 0.5263

Prior diagnosis of pneumonia N/A N/A N/A – – – 

Occupational exposure to asbestos – – – 1.51 (0.78 to 2.56) .149 0.4137

Emphysema on scan – – – N/A N/A N/A

Longest nodule diameter, per mm – – – N/A N/A N/A

Longest perpendicular diameter, per mm 1.11 (1.06 to 1.15) <0.001 0.09962 N/A N/A N/A

Longest perpendicular diameter2, per mm2 1.00 (1.00 to 1.00) 0.015 −6.524×10–4 N/A N/A N/A

Presence of non-solid nodule 1.52 (0.92 to 2.42) 0.077 0.4217 N/A N/A N/A

Presence of part solid nodule 2.49 (1.36 to 4.21) 0.001 0.9108 N/A N/A N/A

Presence of nodule in upper lobe 1.60 (1.05 to 2.39) 0.021 0.4685 N/A N/A N/A

Presence of spiculated nodule 2.12 (1.29 to 3.37) 0.002 0.7512 N/A N/A N/A

Nodule count per scan, per additional nodule 1.67 (0.99 to 2.98) 0.049 0.5128 N/A N/A N/A

Nodule count per scan2, per additional nodule2 0.82 (0.66 to 0.97) 0.019 −0.1947 N/A N/A N/A

The small dash signifies that the variable was included in the initial regression analysis but not in the final model and thus does not have a value in the equation.
 N/A, not applicable (was not included in the initial regression analysis).
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model which did not use polynomials was also created (see 
online supplementary appendix). Its performance was equivalent 
to that of the polynomial model (online supplementary appendix 
tables 2–4 and figure 1). However, the polynomial model was 
featured because it requires fewer variables than the base parsi-
monious model (11 vs 14). This phenomenon is likely explained 
by the non-linear relationship between most continuous variables 
and the risk of lung cancer; polynomial transformation allows 
this complex relationship to be incorporated rather than using 
other highly collinear variables as a compensating mechanism.

The use of polynomials reintroduces the risk of overfitting, as 
it is possible to get increasingly good fits on the original data by 
increasing the power of the polynomials. To avoid this, only poly-
nomials to the second power were used; bootstrapping showed 
that there was only a slight optimism of the bootstrapped AUC 
(0.785) compared with the insample AUC (0.795).

Patient characteristics model
There are numerous published lung cancer risk models using 
only patient characteristics that could be validated on this 
study’s data set, namely the Bach, Spitz, Liverpool Lung Project, 
Etzel, PLCOM2011 (prostate, lung, colorectal, and ovarian cancer 
screening trial 2011 model version), PLCOM2012 (PLCO 2012 
model version), Kovalchik and Pittsburgh Predictor models.5 14–20 
Rather than replicating each model, the patient characteristics 

model was created with the data at hand to show the contrast in 
predictive accuracy when lacking scan data. We show that omit-
ting CT scan predictors significantly increases the NND and the 
number of delayed diagnoses at a given specificity.

Patz model
An important limitation of most of our models is the large 
number of variables required to produce a reliable risk predic-
tion. To a general extent, more variables produce better models; 
the potential drawback is that the data have to first be made 
available. Patz and colleagues created a simple model based on 
the NLST definition of a positive baseline scan: Participants who 
had a negative screening result at T0 may skip the first follow-up 
annual screening round.7 We replicated this model, which 
resulted in avoiding 18 052 (74.1%) 1-year follow-up scans at 
the expense of delaying 71 (40.8%) diagnoses. The disadvantage 
is that only one threshold exists which is inferior to the polyno-
mial model; its advantage is simplicity.

diameter model
The diameter model was included to demonstrate the added 
value of nodule size information. It is also an extension of the 
Patz model. The patient characteristics model included seven 
variables and the diameter model only one, yet their AUCs can 
both be rounded to 0.70. Despite this, the curves do not overlap; 
rather, the patient characteristics model performance at higher 
risk was superior to the diameter model, and vice versa for lower 
risk. Actually, the poor predictive capability of the diameter 
model at lower risk is due to the lack of nodule data for diame-
ters less than 4 mm; up to a false positive rate of 0.1, the ROC 
curve is virtually identical to that of the Patz model. This would 
explain why the model was uncalibrated (p<0.001).

PanCan model
The PanCan model (full model with spiculation) calculates 
cancer risk in individual nodules based on patient characteristics 

Figure 2 Logistic regression ROC curves of five risk prediction models. 
AUC, area under the ROC curve; ROC, receiver operating characteristics.

Table 4 ROC AUC of 1000 bootstrap sample fitted models applied to 
the original sample

Model roC AuC original sample (95% CI)

Polynomial model 0.785 (0.784 to 0.786)

Patient characteristics model 0.693 (0.692 to 0.693)

Diameter model 0.697 (0.697 to 0.697)

Patz model 0.666 (0.666 to 0.666)

PanCan model 0.727 (0.727 to 0.727)

AUC, area under the curve; ROC, receiver operating characteristics.

Figure 3 True positive and false positive rate probabilities against 
risk threshold using the polynomial model. The two thinner lines 
encompassing each thicker line represent the 95% CIs.
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and CT scan data.6 As mentioned above and in the online supple-
mentary appendix, some scan variables used for calculating the 
PanCan risk score in our study were slightly different from those 
originally intended. The presence of any non-solid, part solid, 
upper lobe located, and spiculated nodules in the entire scan 
were included in an individual participant’s PanCan risk score.

The PanCan model was validated in other cohorts and has 
become a relatively popular prediction tool incorporated, for 
example, in the recently published British Thoracic Society 
guidelines for nodule management.21–24 White and colleagues 
validated the PanCan model in a NLST validation data set and 
presented an AUC of 0.963 compared with our 0.727.25 This 
considerable difference can be explained by the fact that they 
included an unrepresentative sample of participants who had 
exactly one pulmonary nodule detected at T0 (n=4431). Whereas 
the average longest diameter in benign and malignant nodules in 
this study was 7.7 mm and 12.2 mm, respectively, those in White 
and colleagues' study were 6.3 mm and 21.2 mm, respectively. 
The larger average difference in nodule size between cancers 
and non-cancers enables the discrimination of the two to be a 
much easier task. Regardless, it must be kept into consideration 
that the models’ objectives differ: The PanCan provides a nodule 
malignancy risk within an unspecified period of time (validated 
in data sets with up to 12.6 years follow-up) whereas our models 
provide a lung cancer risk between 1 year and 2 years of the 
baseline scan. Therefore, it is not surprising that the data were 
not consistent with this model’s outcome distribution (p<0.001) 
(online supplementary appendix table 4).

The PanCan model ROC curve appears to be a combination of 
the peak performances of the patient characteristics or diameter 
models, though inferior to the polynomial model. The greatest 
limitation of the PanCan predictor is its necessity for at least one 
nodule to be present to be able to make an accurate prediction.

existing literature
Many lung cancer risk models have been published, of which most 
are based solely on patient characteristics.5 26 27 Models which 
included genetic variables are the Expanded Spitz, Improved 
Liverpool Lung Project, Young and Li models.14 28–30 Clinical 
outcomes such as symptoms and blood test results were included 
in the Hippisley-Cox, Park and Iyen-Omofoman models.31–33 
The Recalibrated Bach model is the only lung cancer risk model 
which uses both the baseline scan and functional scores.34 The 
NLST did not include these additional measures.

Pastorino and colleagues compared annual and biennial screen-
ings in the Multicentric Italian Lung Detection Trial (besides the 
control group), but no risk model was used to assign subjects to 
each arm; neither group showed a statistically significant protec-
tive effect over the control group, although this is probably due 
to the small sample size.35

The Dutch-Belgian Randomised Lung Cancer Screening Trial 
included screening intervals of 1 year, 2 years and 2.5 years.36 A 
significant difference in the number of late-stage and interval 
cancers of a 2.5-year interval compared with the 1-year and 2-year 
intervals was shown, though no difference was found between 
the 1-year and 2-year intervals. Two-year lung cancer probability 
in participants with no detected pulmonary nodules—more than 
half of the sample size—was 0.4%; it was hereby suggested to 
apply a 2-year screening interval to these cases.

strengths and limitations
A major limitation of this study is its retrospective character. 
We do not know the actual impact of delayed diagnoses on 

lung cancer mortality, the most relevant outcome. However, to 
perform a randomised controlled trial—a fixed 1-year screening 
interval group versus a tailored intervals group—would be 
extremely costly; modelling studies remain the most viable 
alternative.

Again, our models do not predict the immediate lung cancer 
risk; thus, it would be necessary to use it alongside a protocol for 
findings that requires a follow-up intervention within 1 year of 
the baseline scan. Also, as the NLST was limited to three screening 
time points, our models’ predictive capabilities beyond the first 
2 years are unknown. The availability of at least one follow-up 
CT scan provides valuable novel information on nodule growth 
over time; our models do not take this into consideration.

Pinsky and colleagues showed that there was a large varia-
tion in inter-radiologist nodule detection rates in the NLST; it is 
highly likely that the same limitation applies to nodule charac-
teristics.37 This issue hampers the creation of a perfect model, as 
one radiologist may systematically label each participant with a 
lower risk score than another radiologist.

Another limitation is that our models were not validated on 
an independent data set. Considering that the NLST data used 
in this study are by far the largest lung cancer screening data 
set available—with also the highest number of participating 
radiologists—the models created from the data are expected to 
have a high external validity. Despite this being the case, having 
‘only’ 174 lung cancer cases can be considered a limitation 
for the development of risk models (see online supplementary 
appendix).8 Therefore, a maximum of 17 variables was prese-
lected for each model (if applicable) as shown in table 2; this 
selection was mainly based on recurring variables used for other 
models.5 7 14–20 26–34

Age and smoking behaviour are widely accepted risk factors 
already used as inclusion criteria for lung cancer screening 
programmes. Previously having a cancer increases the risk for 
developing future cancers,5 16 31 and lung cancer is also known to 
be linked to asbestos exposure and COPD.5 12 14–17 28 30 Though 
previously described, gender,6 14 17 19 21 29 33 family history 
of lung cancer5 6 16 18 19 29 and the prior diagnosis of pneu-
monia were not included in any of our parsimonious models 
(p>0.20).4

In terms of CT features, nodule size is considered the best 
predictor of malignancy.6 21 34 Longest diameter and perpendic-
ular diameter were used; automatic nodule volume measure-
ments were not available despite this having been shown to have 
a better specificity and positive predictive value than diameter 
for deciding pulmonary nodule management.36 38 Emphysema 
on the scan was expected to somewhat reflect COPD diag-
nosis.6 19 34 As pulmonary nodules are commonly described as 
one of three types, the risk of part solid and non-solid nodules 
are referenced against the more prevalent solid nodules; 
however, the relationship appears to differ strongly among 
models.6 34 Spiculation, a phenomenon thought to be associated 
with unrestrained and asymmetrical tumour growth, is usually 
regarded as a red flag in the radiological community.6 39 The 
variable is only present in a minority of malignancies, but is 
considerably less common in benign opacities. Finally, nodule 
count was recently shown to have a negative parabolic relation-
ship with malignancy risk, also confirmed by the coefficients in 
our polynomial model.6 38

Although other aspects such as race, educational level, socio-
economic status and second-hand smoke exposure were also 
deemed relevant for the prediction models, these variables lack a 
standardised classification system and would thus be difficult to 
apply to different cohorts.
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ConCLusIon
In conclusion, we have reported five lung cancer risk models 
based on patient characteristics and CT scan data from the 
largest lung cancer CT screening data set available, with the aim 
of personalising the follow-up interval of individual participants 
to either 1 year or 2 years following the baseline scan. The patient 
characteristics model represents the best performance achievable 
without scan information. The diameter and Patz models repre-
sent simple models only using the best lung cancer predictor: 
pulmonary nodule size. The PanCan model is a renowned and 
widely used model predicting pulmonary nodule malignancy 
risk. We showed that the polynomial model—including both 
patient characteristics and scan morphology variables—is supe-
rior to all aforementioned models.

Implementation of personalised follow-up intervals could 
noticeably reduce screening programme costs, as well as partic-
ipant radiation exposure and radiologist workload, without 
delaying a remarkable number of diagnoses. Using the polyno-
mial model, 10.5% of T1 scans could be saved without delaying 
a single cancer diagnosis. Alternatively, a third and half of the 
T1 scans could be avoided at the expense of 5.2% and 12.6% 
delayed diagnoses, respectively.
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