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The lower airway microbiota in early cystic
fibrosis lung disease: a longitudinal analysis
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ABSTRACT
Rationale In infants and young children with cystic
fibrosis, lower airway infection and inflammation are
associated with adverse respiratory outcomes. However,
the role of lower airway microbiota in the pathogenesis
of early cystic fibrosis lung disease remains uncertain.
Objectives To assess the development of the lower
airway microbiota over time in infants and young
children with cystic fibrosis, and to explore its association
with airway inflammation and pulmonary function at age
6 years.
Methods Serial, semi-annual bronchoscopies and
bronchoalveolar lavage (BAL) procedures were performed
in infants newly diagnosed with cystic fibrosis following
newborn screening. Quantitative microbiological cultures
and inflammatory marker (interleukin 8 and neutrophil
elastase) measurements were undertaken
contemporaneously. 16S ribosomal RNA gene
sequencing was conducted on stored BAL samples.
Spirometry results recorded at 6 years of age were
extracted from medical records.
Measurements and main results Ninety-five BAL
samples provided 16S ribosomal RNA gene data. These
were collected from 48 subjects aged 1.2–78.3 months,
including longitudinal samples from 27 subjects and 13
before age 6 months. The lower airway microbiota
varied, but diversity decreased with advancing age.
Detection of recognised cystic fibrosis bacterial
pathogens was associated with reduced microbial
diversity and greater lower airway inflammation. There
was no association between the lower airway microbiota
and pulmonary function at age 6 years.
Conclusions In infants with cystic fibrosis, the lower
airway microbiota is dynamic. Dominance of the
microbiota by recognised cystic fibrosis bacterial
pathogens is associated with increased lower airway
inflammation, however early microbial diversity is not
associated with pulmonary function at 6 years of age.

INTRODUCTION
Presymptomatic infants with cystic fibrosis (CF)
diagnosed following newborn screening can already
have evidence of infection and inflammation in
their lower airway samples. These changes are asso-
ciated with earlier development of bronchiectasis
and worse pulmonary function later in child-
hood.1 2 Particular pathogens, especially
Staphylococcus aureus and Pseudomonas aerugi-
nosa, are associated with increased airway

inflammation.3 4 Recent molecular techniques have
identified the complex, polymicrobial nature of CF
lung disease, with obligate and facultative anae-
robes recovered increasingly from the airways.5–7

However, little is known about the role of these
communities in the pathogenesis of CF lung
disease.
Organisms comprising the human microbiota

have complex relationships with one another and
their host, where resident bacteria have potentially
site-specific roles in immune modulation and
response to individual pathogens.8 Indeed, the
upper and lower airways are distinct anatomical
compartments with different microbial profiles. In
health, the lower airways are not sterile, and while
the lower airway microbiota of healthy children is
poorly described, it is postulated that in disease
states microbial diversity is altered, as either a
primary or a secondary phenomenon, by colonisa-
tion with proliferating cells and by suppression of
innate immunity and airway clearance.8

The airway microbiota is linked to progressive CF
lung disease. Cross-sectional studies of adults and
older children with CF suggest a relatively diverse
lower airway microbiota,9 10 with decreased micro-
bial diversity in older patients correlated with severe
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lung disease.6 7 10–12 Analyses of explanted lung tissue suggest
markedly reduced microbial diversity in advanced disease states
dominated by recognised CF pathogens, such as S. aureus,
P. aeruginosa and Burkholderia cepacia complex.7 13 14

Evaluating the early lower airway microbiome and its relation-
ship to pulmonary inflammation is essential to understanding
the pathogenesis and therefore potentially altering the course of
CF lung disease. Here, we describe the early lower airway micro-
biota in children with CF and explore its relationship with lower
airway inflammation and pulmonary function at age 6 years. We
hypothesised that reduced bacterial diversity during early child-
hood is associated with lower lung function.

METHODS
Participants
Children identified with CF following newborn screening or as
neonates with meconium ileus and sweat chloride concentra-
tions >60 mmol/L were recruited into a single-centre study in
Melbourne, Australia from 1992 to 2001. As reported previ-
ously, bronchoscopy and bronchoalveolar lavage (BAL) were
performed at the time of study entry, annually thereafter, and
during hospitalisation for pulmonary exacerbation.15–17 BAL
samples were obtained from subjects’ right middle lobe and
lingula bronchi, and except for a small subset,16 these aliquots
were pooled at the time of collection. Inflammatory markers,
interleukin 8 (IL-8) and neutrophil elastase (NE) were measured
and quantitative microbiological culture performed contempor-
aneously, as described previously.15 16 NE ≥5 μg/mL was consid-
ered elevated, consistent with assay detection limits.15 Whole
BAL samples were stored at –70°C. 16S ribosomal RNA gene
(16S rRNA gene) analysis was performed on available samples.
Subjects with at least one BAL sample and corresponding 16S
rRNA gene data were included in this study. The Royal
Children’s Hospital Melbourne Human Research Ethics
Committee approved the study (DA001-2015-32).

Clinical data
Demographic information was obtained at enrolment. Clinical
data, including respiratory symptoms (cough, respiratory hospi-
talisation) and antibiotic use (oral, inhaled or intravenous) were
recorded at 3-monthly clinical assessments and at bronchoscopy.
The best FEV1 and FVC at age 6 years were obtained from
medical records; per cent predicted values were recalculated
using Global Lung Initiative 2012 reference values.18

16S rRNA gene sequencing
Total nucleic acid was extracted from 200 mL of whole BAL
fluid for 16S rRNA sequence analysis. EasyMAG Lysis Buffer
was added to a total volume of 2 mL, and cells were disrupted
by bead beating with 0.1 mm MO BIO glass beads (catalogue
number 2600-50B2) using the MO BIO vortex adapter at 4°C
for 10 min. Beads were pelleted in a microcentrifuge at
maximum speed for 1 min, and the supernatant was removed
and transferred to the NucliSENS easyMAG instrument
(bioMérieux, Inc, Marcy l’Etoile, France). Nucleic acid extrac-
tion followed the manufacturer’s protocol using off-board lysis.
Total nucleic acid was eluted in 50 mL easyMAG Extraction
Buffer 3 and 16S rRNA gene sequences were generated on the
Roche 454 platform, using the V1-3 variable regions following
Human Microbiome Project protocols.19 In brief, the V1–3
region was amplified using the following primers, adding index
sequences to distinguish each sample: 27F–50 CCTATCCCC
TGTGTGCCTTGGCAGTCTCAG_AGAGTTTGATCCTGGCT
CAG; 534R–50 CCATCTCATCCCTGCGTGTCTCCGACTCAG

_INDEX_ATTACCGCGGCTGCTGG. The cycling conditions
were: 95°C, 2 min; 30 cycles each at 95°C, 20 s; 56°C, 30 s; 72°C,
5 min; after cycling held at 4°C. PCR products were cleaned using
Agencourt AMPure Beads (Beckman Coulter, Indianapolis,
Indiana, USA), and DNA concentrations were determined using
the Qubit Fluorometer (ThermoFisher, Waltham, Massachusetts,
USA). Samples were pooled in equimolar concentrations, except
for negative controls and poorly amplified samples, which were
added in their entirety. The pools were concentrated using a
Qiagen MinElute column following the manufacturer’s instruc-
tions (Qiagen, Germantown, Maryland, USA) and eluted in 30 mL
1× low TE buffer, pH 8.0. Sequences were generated on the
Roche 454 GS FLX Titanium Instrument (Roche/454 Life
Sciences, Branford, Connecticut, USA). Sequences were binned,
based on the index sequences, allowing one mismatch.
Low-quality reads were removed when average quality scores were
<Q35 or the read length <200 base pairs. Chimeric sequences
were identified using NAST-iEr and Chimera Slayer,20 and chi-
meric sequences were removed. Reads passing quality control
were classified using Ribosomal Database Project naïve Bayesian
classifier,21 V.2.2 with training set 6. Sequences were classified to
the lowest taxonomic level that could be assigned with confidence
values >0.5. Negative control samples from PCR reagents and the
buffer processed with the extraction protocol in parallel with the
samples were included, and these yielded 1–359 sequence reads.

Statistical analysis
Sequence data from patient samples were subsampled to 1000
reads for analysis of community structure,22–24 and were corre-
lated with culture and inflammatory data from the correspond-
ing lobe. Sequences not classified to phylum level were removed
before analysis. The relative abundance of sequences assigned to
genus level was calculated from each BAL sample; individual
genera that accounted for ≥60% of all sequences in a single
sample were defined as ‘dominant’. The Shannon Diversity
Index (SDI) of individual samples was calculated using 1000
random sequences from each sample. This was repeated 100
times and the mean value reported. Study data were managed
using REDCap electronic data capture tools hosted at Murdoch
Children’s Research Institute.25 Statistical analysis was per-
formed using ‘R’ (R Foundation for Statistical Computing,
Vienna, Austria). IL-8 and NE values were logarithmically trans-
formed (log10) for analysis because of their skewed distributions.
When NE activity was below the assay detection threshold, a
value of 2.5 μg/mL was assigned. Generalised estimating equa-
tions regression with unstructured correlation and robust SEs,
linked by subject identifier, were used to account for multiple
samples from the same subject. The regression model used
Gaussian with identity link and binomial distribution with logit
link for continuous and categorical variables respectively. χ2,
paired t tests and linear regression were used if appropriate.
β diversity was assessed using Bray-Curtis dissimilarity.

RESULTS
Subjects
The 16S rRNA V1–3 region could be amplified and sequenced
for bacterial community analysis in 95 samples from 48 subjects,
including serial longitudinal samples from 27 subjects. At least
1000 reads were generated from each of these samples.
Amplification failed or was poor in an additional 53 samples,
possibly due to low bacterial load and/or sample age (see online
supplementary data). Subjects’ characteristics are presented in
table 1, and except for p.Phe508del homozygosity, these did not
differ significantly from the remaining birth cohort at
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recruitment (table 1). CF was diagnosed early, at a median age
of 1.4 months (IQR 1.0–1.7-months). Samples collected from
those with respiratory symptoms were more likely to yield
≥1000 sequences (see online supplementary table S1).

Samples were obtained between 1.2 and 78.3 months of age
(median age 20.4 months, IQR 13.0–32.1 months). Two
samples were collected from 9 subjects, three samples from 16
subjects, and four samples from 2 subjects (see online
supplementary figure S1). Fifty-four (63%) and 45 (51%)
samples were obtained from subjects with respiratory symptoms
and those receiving antibiotics respectively (table 2). Eleven
(13%) samples were collected during respiratory hospitalisation.
Thirty samples were obtained from subjects without respiratory
symptoms and not taking antibiotics at the time of BAL.
Subjects reporting respiratory symptoms were significantly older
and more likely to be taking antibiotics (see online
supplementary table S2). Seventy-eight (82%) samples were
pooled from the right middle lobe and lingula, and 11 (12%)

and six (6%) were separate samples from the right middle lobe
and lingula respectively.

Lower airway microbiota in young children with CF
Overall, 1 201 177 individual sequences were identified, 98% of
which could be classified to genus level. The most prevalent
phyla were Firmicutes (63.7%), Proteobacteria (21.9%),
Actinobacteria (8.1%), Bacteroidetes (4.8%) and Fusobacteria
(1.3%). Staphylococcus was the most prevalent genus (36.6%),
followed by Streptococcus (13.7%), Pseudomonas (6.1%),
Neisseria (5.4%), Haemophilus (4.9%), Gemella (4.9%),
Graniculatella (3.9%), Prevotella (2.8%), Veillonella (2.6%) and
Streptomyces (2.1%) (figure 1).

When genera corresponding with recognised CF pathogens
were detected on 16S rRNA gene analysis, they were occasion-
ally dominant, accounting for ≥60% of all reads in that sample
(figure 2). Staphylococcus was detected in 69 (73%) samples
and was the dominant genus in 18 (26%). Pseudomonas was
detected in 62 (65%) samples and was dominant in 5 (8%).
Stenotrophomonas and Burkholderia were detected in 20 (21%)
and 18 (19%) samples respectively and each was dominant in
one. Haemophilus was detected in 59 (62%) samples, but was
the dominant genus in just 2 (3%). Both of these latter samples
yielded Haemophilus influenzae in quantitative culture.

Although considerable variability existed between individuals
(see online supplementary figure S2), overall microbial diversity
decreased in serial BAL samples in association with increased
patient age (β=−0.01, p=0.03), including in the absence of
respiratory symptoms and antibiotic use (β=−0.02, p=0.02,
figure 3). After adjustment for age and antibiotic use, the pres-
ence of respiratory symptoms was associated with reduced
microbial diversity (β=−0.35, p=0.02). There was no associ-
ation between microbial diversity and CF transmembrane

Table 1 Demographic details of subjects with BAL samples
included for analysis compared with remainder of original birth
cohort at recruitment

Study
subjects
(n=48)

Remainder of
birth cohort
(n=94)

p Value
(χ2)

Male, n (%) 25 (52%) 38 (40%) 0.19
Mode of diagnosis n=46 n=87 0.54
Newborn screening, n (%) 33 (72%) 65 (75%)
Meconium ileus, n (%) 11 (24%) 16 (18%)
Other clinical presentation, n (%) 2 (4%) 3 (3%)
Family history, n (%) 0 3 (3%)

Pancreatic status at recruitment n=48 n=79 0.93
Pancreatic insufficient, n (%) 41 (85%) 67 (85%)
Pancreatic sufficient, n (%) 7 (145%) 12 (15%)

CFTR genotype n=47 n=85 0.03
P.Phe508del homozygous, n (%) 32 (68%) 38 (45%)
P.Phe508del heterozygous, n (%) 14 (30%) 42 (49%)
Other, n (%) 1 (2%) 5 (6%)

BAL, bronchoalveolar lavage.

Table 2 Bronchoalveolar lavage (BAL) samples (n=95) from which
the 16S rRNA V1–3 region could be amplified and sequenced for
bacterial community analysis

Age at BAL
(months)

Samples
with 16S
rRNA gene
data, n (%)

Respiratory
symptoms at
time of BAL,
n (%)

Antibiotics
at time of
BAL, n (%)

SDI, median
(IQR)

0–12 17 (17.9%) 8 (50.0%)* 7 (43.8%)* 1.30 (0.87–2.01)
12–24 33 (34.7%) 19 (61.3%)* 17 (51.5%) 1.80 (1.39–2.13)
24–36 24 (25.3%)† 12 (57.1%)* 10 (45.5%)* 1.84 (0.23–2.21)
36–48 9 (9.5%) 4 (57.1%)* 2 (33.3%)* 1.37 (0.82–1.87)
48–60 8 (8.4%) 7 (100%)* 6 (85.7%)* 0.7 (0.04–1.41)
>60‡ 4 (4.2%) 4 (100%) 3 (75%) 1.08 (0.35–1.77)
Sample total 95 54 (62.8%)* 45 (51.1%)* 1.65 (0.56–2.08)

*Data missing for some subjects within this category.
†One subject contributed two samples to this age category.
‡Age range: 63.6–78.4 months.

Figure 1 Prevalence of phyla and genera. Sequences were classified
to genus level. The overall percentage of reads assigned to individual
phyla and genera are displayed. The genera depicted account for
91.6% of sequences detected in the bronchoalveolar lavage samples.
The relative abundance values in the respective phylum categories not
accounted for by the genera presented are: Firmicutes 1.97%,
Proteobacteria 2.74%, Bacteroidetes 0.56%, Actinobacteria 2.23% and
Fusobacteria 0.68%.
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regulator mutation (β=−0.2; p=0.16), respiratory symptoms
(β=−0.27, p=0.20) or antibiotic use (β=−0.002; p=0.97) at
bronchoscopy.

Correlation of the lung microbiota with quantitative culture
16S rRNA gene analysis confirmed the finding of recognised CF
pathogens by culture. In all samples where S. aureus or P. aerugi-
nosa grew in concentrations ≥105 colony forming units
(cfu)/mL, Staphylococcus or Pseudomonas respectively were
detected in 16S rRNA gene analysis. S. aureus was detected by
quantitative culture at concentrations ≥105 cfu/mL in seven BAL
samples. In five of the seven samples, Staphylococcus was the
dominant genus in 16S rRNA gene analysis. Staphylococcus was
dominant in 16S rRNA gene analysis of 13 additional samples;
in 11 of these, S. aureus was also detected by culture. Similarly,
Pseudomonas was dominant in 16S rRNA gene analysis of
five BAL samples; in all five, P. aeruginosa cultures yielded
≥105 cfu/mL. P. aeruginosa was also present in concentrations
≥105 cfu/mL in two additional samples; in both, Pseudomonas
was detected, but not dominant on 16S rRNA gene analysis.
B. cepacia complex and Stenotrophomonas maltophilia each
grew in concentrations ≥105 cfu/mL in a single BAL sample. In
16S rRNA gene analysis of the respective samples, Burkholderia
was dominant and Stenotrophomonas was detected in a relative
abundance of 59.6%. In the only BAL dominated by
Stenotrophomonas, S. maltophilia grew in a concentration of
102 cfu/mL. Cultured organisms regarded as upper respiratory
commensals (eg. α-haemolytic streptococci and Neisseria
species) were supported by 16S rRNA gene analysis findings of
corresponding genera in variable abundance (table 3).
Furthermore, 16S rRNA gene analysis frequently revealed the
presence of organisms that went undetected by routine culture.

Lower airway inflammation and the lung microbiota
Dominance of established proinflammatory organisms
(Pseudomonas, Staphylococcus, Streptococcus, Haemophilus,
Stenotrophomonas and Burkholderia)3 on 16S rRNA gene
analysis was associated with higher inflammation indices in the
lower airway (figure 4). In BAL samples with a dominant
pathogen genus, the median IL-8 and NE were 1041 (IQR
210–2252) pg/mL and 18.4 (IQR 6.0–37.8) μg/mL respectively,

Figure 2 Relative abundance of individual genera at each sampling
time. Individual genera with relative abundance >0.5% are depicted in
rows. Individual bronchoalveolar lavage (BAL) samples are displayed in
columns. Samples are organised according to similarity. The coloured,
vertical bars at the top indicate antibiotic treatment and respiratory
symptoms at the time of BAL (red—yes, black—no, white—unknown).
The relative abundance of each genus in each BAL sample is reflected
in the intensity of the heat map colour.

Figure 3 Shannon Diversity Index versus subject age (months) (β=−0.01, p=0.031). Samples obtained during clinical stability, in the absence
of respiratory symptoms or antibiotic use, are depicted in red (β=−0.02, p=0.02).
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compared with 323 (IQR 84–875) pg/mL and 5.7 (IQR
2.5–14.4) μg/mL in other samples (IL-8, p=0.002; p=0.0008).
IL-8 and NE concentrations in BAL samples dominated by
Streptococcus were comparable to those without a dominant

pathogen genus (IL-8, median 254.5 pg/mL, IQR 136–765 pg/mL;
NE, median 3.9 μg/mL, IQR 2.5–6.8 μg/mL) (figure 4).

Reduced microbial diversity was associated with increased
BAL NE (β=−0.5, p=0.02, age-adjusted β=−0.43, p=0.03),
although not IL-8 (β=−0.23, p=0.05, age-adjusted β=−0.17,
p=0.097). Figure 5 illustrates the relationship of microbial
diversity, IL-8 levels, NE concentrations, and dominance of
pathogen genera, Staphylococcus and Pseudomonas.

Compared with asymptomatic subjects, children symptomatic
at the time of bronchoscopy had increased lower airway inflam-
matory markers (IL-8: median 864 (IQR 196–1833) vs 195
(IQR 68–547) pg/mL, t-test log10 IL-8, p=0.005; NE: median
13.0 (IQR 3.6–25.3) vs 5.8 (IQR 2.5–12.0) μg/mL, t-test log10
NE, p=0.02). In subjects who had bronchoscopies when both
symptomatic and asymptomatic, symptoms were associated with
a trend towards increased inflammation (IL-8 (n=14): mean of
differences, 1343 pg/mL, 95% CI −888.2 to 3574.2 pg/mL,
p=0.2; NE (n=13): mean of differences, 16.3 μg/mL, 95% CI
−2.6 to 35.5, p=0.08). A dominant proinflammatory genus was
detected in 22/54 (41%) samples from symptomatic subjects
and in 8/31 (26%) samples from those without symptoms
(p=0.17).

Change in microbiota over time
The composition of individuals’ lower airway microbial commu-
nities varied considerably over time (see online supplementary
figure S2). The β diversity of serial samples obtained from indi-
vidual subjects was comparable to the β diversity of samples
obtained from different subjects (median Bray-Curtis dissimilar-
ity (IQR): 0.91 (0.7–0.99) and 0.9 (0.72–0.99) respectively)
with the exception of samples dominated by known proinflam-
matory genera (figure 6).

Pulmonary function measurements and microbiota
There was no relationship between subjects’ bacterial diversity
and their best pulmonary function measures at age 6 years
(figure 7). Neither lowest SDI nor reduced early microbial diver-
sity (age <6-months) was associated with pulmonary function
measures at age 6 years (r2=0.03, p=0.26 and r2=0.001,
p=0.9 respectively).

DISCUSSION
We examined the evolution of lower airway microbiota in
young children with CF over time using BAL samples that were
collected semi-annually up to 24 years ago at the Royal
Children’s Hospital Melbourne, and its association with airway
inflammation and pulmonary function at age 6 years. The lower
airway microbiota was diverse, but diversity decreased with
subject age. Genera of known CF pathogens often emerged, and
their dominance was associated with lower airway inflammation.
We were unable to identify any relationship between microbial
diversity and pulmonary function at age 6 years.

To our knowledge this is the first longitudinal molecular
study of BAL samples from infants with CF and provides unique
insights into their lower airway microbiota during early child-
hood. Recruitment from a single birth cohort not routinely
exposed to prophylactic antibiotics and inclusion of long-term
outcome data add to the study’s ability to provide information
about CF lung disease progression and its relationship to the
lower airway microbiota. The study does however have import-
ant limitations. It involves the secondary analysis of prospect-
ively collected BAL samples from two decades ago. Rigorous
storage and handling practices and strict laboratory exclusion
criteria were implemented to ensure the quality of the 16S

Table 3 Agreement between microbiological culture and 16S
rRNA gene analysis

16S rRNA gene analysis

Standard microbiological culture*
Not
detected

<60%
reads

≥60%
reads†

Staphylococcus aureus (n‡=31) Staphylococcus (n‡=69)
Not detected 23 39 2
CFU 101–104/mL 3 10 11

CFU 105–107/mL 0 2 5
Pseudomonas aeruginosa (n=18) Pseudomonas (n=62)
Not detected 30 47 0
CFU 101–104/mL 3 8 0
CFU 105–107/mL 0 2 5
Haemophilus influenzae (n=13) Haemophilus (n=59)§
Not detected 33 49 0
CFU 101–104/mL 3 3 0
CFU 105–107/mL 0 5 2
Haemophilus species (n=21) Haemophilus (n=59)§
Not detected 29 43 2
CFU 101–104/mL 7 13 0
CFU 105–107/mL 0 1 0
Streptococcus pneumoniae (n=2) Streptococcus (n=91)§
Not detected 4 82 7
CFU 101–104/mL 0 0 0
CFU 105–107/mL 0 2 0
α haemolytic streptococci (n=46) Streptococcus (n=91)§
Not detected 2 46 1
CFU 101–104/mL 2 34 5
CFU 105–107/mL 0 4 1
β haemolytic streptococci (n=3) Streptococcus (n=91)§
Not detected 4 82 6
CFU 101–104/mL 0 1 1
CFU 105–107/mL 0 1 0
Neisseria species (n=28) Neisseria (n=79)
Not detected 14 53 0
CFU 101–104/mL 2 25 0
CFU 105–107/mL 0 1 0
Moraxella cattarrhalis (n=5) Moraxella (n=25)
Not detected 69 21 0
CFU 101–104/mL 0 1 0
CFU 105–107/mL 1 3 0

Stenotrophomonas maltophilia (n=4) Stenotrophomonas (n=20)
Not detected 75 16 0
CFU 101–104/mL 0 2 1
CFU 105–107/mL 0 1 0
Burkholderia cepacia (n=1) Burkholderia (n=18)
Not detected 77 17 0
CFU 101–104/mL 0 0 0
CFU 105–107/mL 0 0 1

*Twenty-seven BAL samples cultured mixed upper respiratory tract commensals (20 in
concentrations of 101–104 CFU/mL and 7 in concentrations of 105–107 cfu/mL). These
could not be correlated with 16S rRNA gene analysis results.
†‘Dominant’ genera account for ≥60% of all 16S rRNA gene analysis reads in an
individual sample.
‡‘n’ represents the number of BAL samples in which the specific species or genus was
detected by microbiological culture and 16S rRNA analysis respectively.
§All 16S rRNA gene sequences for the genera Haemophilus and Streptococcus are
presented. Data were not split below genus level.
BAL, bronchoalveolar lavage; CFU, colony forming unit.
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rRNA gene data. These data correlated with the participants’
own culture results, assessed contemporaneously from the same
BAL samples, and previous findings from lower airway samples
in older patient cohorts,26 and indicate that they accurately rep-
resent the subjects’ lower airway microbiota. In order to address
the potential for reagent contamination, negative sequence con-
trols were processed alongside study samples and only the 64%
of samples that could be subsampled to 1000 reads were
included in analysis of microbial community structure. Further
methodological studies are required to explore the molecular
analysis of BAL fluid from infants and very young children, who
may have both very low sample volumes and total bacterial
load. Future prospective, longitudinal studies of BAL fluid are
also required to determine the impact of cumulative antibiotic
exposure on the airway microbiota. Strict procedural protocols
were maintained to minimise potential contamination with
upper airway secretions. Nevertheless, it is not possible to fully
differentiate between upper airway organisms introduced at the
time of bronchoscopy and the resident lung microbiota.

The lower airway microbiota was notably diverse in our
cohort of newly diagnosed infants with CF. The most prevalent
phylum was Firmicutes, and Staphylococcus the most prevalent

genus. The facultative anaerobes now frequently detected in
molecular analyses of sputum specimens from adults with CF,
Gemella, Prevotella and Veillonella, represented 4.9%, 2.8%
and 2.6% of overall genera respectively. Interestingly, a recent
comparison of BAL samples from 13 older children with CF
(mean age 3.95 years, range 1.1–8.1 years) and nine controls
(mean age 3.78 years, range 0.9–9.75 years), similarly showed
reduced diversity in the CF population.27

The association between reduced diversity with increasing
subject age is consistent with findings from longitudinal studies
of lower airway samples from adults with CF.10 11 It does,
however, contrast with the findings of previous longitudinal ana-
lyses of children with CF, which only examined the upper
airway microbiota.10 28–32 During infancy, the nasopharyngeal
microbiota is dynamic,33–35 although differences between that
of infants with CF and healthy controls have been reported,30 31

including increased relative abundance of Staphylococcae at
baseline,31 changes in Staphylococcus species,31 and the emer-
gence of gram-negative bacteria30 following antibiotic exposure.
Two smaller studies examining oropharyngeal swabs from
infants29 and children10 with CF suggested that upper airway
microbial diversity increased with age. Other studies, however,

Figure 4 Dominant proinflammatory organisms by 16S rRNA gene analysis and (A) interleukin 8 (IL-8) and (B) neutrophil elastase (NE)
concentrations. Data for bronchoalveolar lavage samples with corresponding IL-8 (n=89, 94%) and NE (n=86, 91%) are displayed.
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including those involving this CF infant cohort, have shown
that oropharyngeal microbiology does not accurately predict
that of the lower airway,17 26 and our finding of decreasing
diversity in the latter environment is therefore not surprising.

Dominance of genera of known CF pathogens was associated
with reduced microbial diversity and increased pulmonary
inflammation. In this cohort, bacterial density ≥105 cfu/mL was
associated with greater airway inflammation.17 A recent study of
otherwise healthy children with pneumonia found reduced
upper airway microbial diversity,36 whilst the lower airway
microbiota of adults with end-stage CF lung disease is domi-
nated by a relatively homogenous population of typical CF
pathogens.7 13 In cross-sectional studies of adults, increased

microbial diversity is associated with clinical stability and
improved pulmonary function,12 37 although microbial diversity
was also maintained in tissue samples obtained at lobectomy
from a 3 year old with severe, localised CF lung disease.38

While it was not possible to exclude the potentially confounding
effect of cumulative antibiotic use, our study of young children,
whose lifetime antibiotic exposure is likely considerably less
than their adult counterparts, suggests that microbial diversity
decreases when known pathogens emerge.

The detection of recognised CF pathogens in early childhood
using conventional microbiological techniques is associated with
greater airway inflammation, earlier onset of structural lung
disease, and poorer pulmonary function outcomes.1–3 Using

Figure 5 Interleukin-8 and neutrophil elastase concentrations versus the Shannon Diversity Index (age adjusted, p=0.097 and p=0.03 for
interleukin 8 and neutrophil elastase respectively). Samples dominated by Staphylococcus and Pseudomonas are shown in red and blue respectively.

Figure 6 Bray-Curtis dissimilarity of bronchoalveolar lavage (BAL) samples. (A) Box plot summarising the pairwise Bray-Curtis dissimilarity of BAL
samples obtained from the same and different subjects, and (B) heatmap of all pairwise distances. Outliers in (A) correlate with pairs of samples
dominated by known proinflammatory pathogens.
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molecular techniques to confirm the former, our results clearly
demonstrate that dominance of pathogen genera in 16S rRNA
gene analysis is associated with greater inflammation in the
lung. The impact of this finding on structural lung disease in
early childhood could not be tested, as CT of the chest was not
routinely performed in this patient population two decades ago.
While we did not demonstrate an association between the lower
airway microbiota and pulmonary function at age 6 years,
normal spirometry results do not exclude bronchiectasis, which
occurs in approximately 80% of early school-aged children with
CF, including those with normal FEV1 values.39 Whilst this study
was not designed to address causality, it is possible that longer-
term follow-up will reveal a relationship between decreased diver-
sity and abnormal pulmonary function later in life.

β diversity was of similar magnitude in longitudinally collected
samples from individual subjects as it was in samples from differ-
ent subjects, highlighting the extent to which the lower airway
microbiota changes over time, particularly in the presence of
dominant CF pathogens, where exploration of the microbiota
may explain increased lower airway inflammation and clinical
deterioration in the absence of conventional microbiological
findings. In keeping with observations made in adult patients at
various stages of an exacerbation cycle, microbial diversity may
recover, either returning to baseline or developing a new micro-
bial community structure. The long-term impact of these pertur-
bations is unknown, but finding greater lower airway
inflammation in the presence of dominant CF pathogen genera
suggests a likely negative impact on structural lung disease and
pulmonary function. It is unclear whether regained bacterial
diversity alters the trajectory of CF lung disease in young chil-
dren. Further insights can be achieved by prospective compari-
sons with BAL samples from age-matched controls and from
analysing changes in the lower airway microbiota at frequent,
more regular intervals and for a longer time period.

In conclusion, the lower airway microbiota in infants and chil-
dren with CF is diverse, but bacterial diversity declines with
increasing age. When present, CF pathogen genera can become
dominant and are associated with greater inflammation, but

individuals can recover diversity or return to their baseline
microbiota. Further prospective longitudinal studies are required
to understand the factors that change the lower airway micro-
biota over time, and to assess the impact of these changes on
clinical outcome.
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