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CCL2 and T cells in pulmonary fibrosis: 
an old player gets a new role
Awo D Osafo-Addo, Erica L Herzog

Idiopathic pulmonary fibrosis (IPF) is an 
incurable condition characterised by 
progressive extracellular matrix deposi-
tion and tissue remodelling in the adult 
human lung.1 Because 5-year mortality 
rates approach 70%, new approaches to 
treatment are sorely needed. IPF is thought 
to result from an abnormal wound healing 
response caused by an unknown insult to 
the lung epithelium that results in the 
recruitment and activation of myofibro-
blasts via incompletely understood mecha-
nisms.1 The contribution of immune 
activation to these processes remains 
unknown. While the contribution of 
innate cell populations such as macro-
phages is gaining increased acceptance, 
the contribution of T cell driven adaptive 
immune responses remain controversial.2 
The paper by Milger et al3 represents an 
important step forward in our under-
standing of this issue.

Historically, IPF has been defined as a 
non-immune entity due to its lack of an iden-
tifiable antigen driven immune response, 
lack of inflammatory infiltrate on lung 
biopsy, lack of benefit from conventional 
immunosuppressive therapies and lack of 
a requirement for lymphocytes for devel-
opment of maximal fibrosis in commonly 
used animal models.1 2 However, the now 
seminal finding that lymphocyte modu-
lating agents actually worsen outcomes 
in IPF4 combined with human and animal 
data demonstrating an imbalance between 
T helper populations in these settings 
suggests a critical role for lymphocytes 
in the orchestration of fibrotic responses. 
For instance, Th2 and Th17 cells are 
associated with fibrogenesis, while Th1, 
Th22 and γδ-T cells appear to be at least 
partially protective.5–9 In contrast, regu-
latory T cells (Tregs) can differentially 
promote or suppress fibrosis depending 
on the setting.10 When viewed in combi-
nation, these data suggest a cell-spe-
cific and state-specific contribution of T 
lymphocytes to IPF, leading to the growing 
recognition of T cell heterogeneity as an 

important area of investigation for this 
incurable disease.

CCL2 is a chemokine which orches-
trates immune cell recruitment via its pref-
erential binding to the CCR2 receptor.11 It 
is induced during inflammatory responses 
when immune cells are required for tissue 
repair.11 Both human and murine studies 
have shown that CCL2 contributes to 
fibrosis through a variety of mechanisms 
involving inflammation, angiogenesis and 
myofibroblast accumulation.12 Specifi-
cally, elevations in CCL2 have been found 
in the serum,13 bronchoalveolar lavage14 
and the alveolar epithelium15 of patients 
with IPF, and deletion or inhibition of 
CCR2 reduces pulmonary fibrosis in 
several experimental settings.16 Further-
more, studies using murine models of 
pulmonary fibrosis and primary IPF lung 
fibroblasts suggest an interplay between 
TGFβ1, interleukin (IL)13 and CCL2 
promotes fibroproliferation17 18 and exces-
sive activation of the CCR2/CCL2 axis is 
predictive of poor prognosis in patients 
with IPF.19

Based on this preclinical evidence, 
Carlumab (a humanised monoclonal anti-
body targeting CCL2) was tested for effi-
cacy in a randomised controlled trial of 
patients with IPF.12 This study, which was 
published in 2015, failed to find a benefit 
for Carlumab therapy and in fact was 
terminated early due to a trend towards 
worsening of lung function in one of the 
treatment arms. Now, for the first time, 
the study by Milger et al3 offers a possible 
explanation to the biology behind these 
observations.

Milger et al3 identify CCR2 expressing 
CD4+ T lymphocytes as a subset of 
CD4+ cells displaying anti-inflammatory 
and antifibrotic properties and explore 
their role in lung fibrosis. Specifically, 
studies performed in the bleomycin 
mouse model reveal the accumula-
tion of CCR2 expressing CD4+ T cells 
(CCR2+ CD4+) in the fibrotic lung. The 
majority of these cells were phenotyped as 
effector memory T cells and demonstrated 
migratory potential due to their expres-
sion of homing receptors. Curiously, 
however, these cells also bear hallmarks 
of natural Tregs in that they express high 
levels of FoxP3 and IL-10. Functionally, 
CCR2+ CD4+ cells suppress effector 

T cell proliferation in similar magnitude 
as natural Tregs and adoptive transfer of 
these cells improves fibrosis in bleomycin 
treated mice. In human correlates of these 
findings, increased concentrations of 
CCR2+CD4+ cells are seen in broncho-
alveolar lavage specimens from patients 
with IPF when compared with controls. 
Taken together, these data show CCL2 
might act on these CCR2+ CD4+ cells to 
abrogate inflammation and fibrosis, and 
suggest that the therapeutic failure of 
Carlumab might be related to suppression 
of this population.

The impact of the study by Milger 
et al3 cannot be overstated. In addition 
to offering a potential explanation for 
the surprising failure of CCL2 targeted 
therapies, the work provides more global 
insight into IPF. For example, it supports 
the emerging concept that a single receptor 
such as CCR2 might play different roles 
depending on its temporospatial expres-
sion during injury and repair. It also 
suggests that CCL2 might play equal and 
opposing roles in innate and adaptive 
responses; specifically, to function as a 
recruiter of fibrosis-promoting macro-
phages while simultaneously inducing the 
accumulation of immunosuppressive Treg 
population. However, because CCR2 is 
also expressed on alveolar epithelium and 
fibroblasts, the effects of CCL2 neutrali-
sation might extend to the regulation of 
injury and repair responses in stromal 
cells. It also demonstrates the need for 
improved modelling systems since the 
function of the CCR2+ CD4+ cells in the 
context of experimentally induced fibrosis 
in mice may not necessarily recapitulate 
the situation in human disease. The study 
also highlights the need for personalised 
and specific treatments that can selectively 
target detrimental cells of interest and 
supports the growing consensus that in the 
complex milieu of the fibrotic lung, inter-
ruption of a single receptor-ligand inter-
action may be insufficient to overcome 
the activation of multiple competing and 
compensatory pathways.

As with any novel finding, many ques-
tions remain. The relationship of these 
CCR2+ CD4+ cells to other lymphocyte 
populations, as well as to other immune 
cells present in the IPF lung, will require 
further investigation. The contribution 
of these cells to injury and remodelling 
remains undeciphered, though the genera-
tion of mice with inducible CCR2 deletion 
specifically targeted to CD4+ cells might 
answer this question. The relationship of 
CCR2+ CD4+ cells to the IPF disease 
state remains unelucidated, as does their 
relationship with disease progression 
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and response to therapy. Nevertheless, 
the study by Milger et al3 firmly frames 
CCR2+ CD4+ cells as a new and exciting 
area of study of CCL2 biology as it relates 
to pulmonary fibrosis. Further under-
standing of these findings will advance the 
evolving understanding of the complex 
contribution of lymphocyte heterogeneity 
to IPF and related conditions affecting the 
adult mammalian lung.
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