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ABSTRACT
Background Healthcare associated infections,
including ventilator associated pneumonia, are difficult to
diagnose and treat, and are associated with significant
morbidity, mortality and cost. We aimed to demonstrate
proof of concept that breath volatile profiles were
associated with the presence of clinically relevant
pathogens in the lower respiratory tract.
Methods Patients with sterile brain injury requiring
intubation and ventilation on the intensive care unit
were eligible for inclusion. Serial clinical and breath
data were obtained three times a week, from
admission up to a maximum of 10 days. Bronchial
lavage for semiquantitative culture was collected
immediately prior to breath sampling. Breath samples
were collected in triplicate for off-line analysis by
thermal-desorption/gas chromatography/time-of-flight
mass spectrometry. Breath data were recorded as
retention time/mass ion pairs, and analysed ( pathogen
present vs absent) by ANOVA-mean centre principal
component analysis.
Results Samples were collected from 46 patients
(mean (SD) age 49 (19) years; 27 male). The dominant
factors affecting breath sample analysis were the
individual breath profile and duration of intubation.
When these were taken into account, clear separation
was seen between breath profiles at each time point
by the presence/absence of pathogens. Loadings plots
identified consistent metabolite peaks contributing to
this separation at each time point.
Conclusions Breath volatile analysis is able to classify
breath profiles of patients with and without significant
pathogen load in the lower respiratory tract. If
validated in independent cohorts, these findings could
lead to development of rapid non-invasive point-of-
care surveillance systems and diagnostics for lower
respiratory tract infection in the intensive care unit.

INTRODUCTION
Hospital acquired infections are a leading cause of
morbidity and mortality, and result in significantly
increased healthcare costs.1–3 Invasively ventilated
patients are at particular risk of ventilator associated
pneumonia (VAP), as they often have severe con-
comitant illness, and many of the normal defence
mechanisms are either suppressed or bypassed.
Surveillance and diagnosis are difficult, relying on
clinical assessments in conjunction with time-
consuming microbiological laboratory evidence

which requires the culture of respiratory tract
samples.4 5 Pathogen identification is critical for
accurate diagnosis and treatment, but currently
based on culture technology, which can take days to
realise. The inevitable consequence is the frequent
use of broad spectrum antimicrobial therapy when
VAP is suspected, which can result in the develop-
ment of multiresistant organisms, Clostridium
difficile infections and associated acquisition costs.
An urgent global challenge has therefore emerged,
to develop surveillance and diagnostic technologies
that could provide accurate information within a
short time frame and so allow more informed use of
antibiotic therapy at an early stage.6 This challenge
has been championed by WHO,7 endorsed by
national governments2 and highlighted within inter-
national consensus-derived sepsis guidelines.8

Metabolic degradation products include volatile
organic compounds (VOCs), which can be detected
in the gas emitted from an organism, from the
headspace above pathogen cultures9 and in human
breath using highly sensitive technologies such as
nuclear magnetic resonance spectroscopy and mass
spectrometry.10 11 These compounds offer great
potential as pathogen biomarkers—they are direct
consequences of metabolic processes, whether

Key messages

What is the key question?
▸ Are specific breath volatile profiles associated

with the presence of lower respiratory tract
pathogens in ventilated patients at high risk of
pneumonia?

What is the bottom line?
▸ The breath profile contains volatile biochemical

species that could reliably discriminate between
pathogen-positive and pathogen-negative
patients when tested at multiple time points
during the course of their critical illness.

Why read on?
▸ This is the first study to demonstrate that

metabolites in breath profiles are associated
with pathogens in the lower respiratory tracts
of ventilated patients, and might form the basis
of novel diagnostic algorithms.
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normal or altered, and can be analysed rapidly, accurately and
non-invasively at a relatively low cost,12 with the potential for
point-of-care testing once suitable sensors are developed for the
recognition of diagnostic chemical species.

We therefore aimed to investigate whether breath metabolic
profiling could be used to identify specific patterns of volatiles
associated with lower respiratory tract pathogens in patients
at risk of developing VAP. We first developed a breath sam-
pling methodology for use in invasively ventilated patients on
intensive care, and then performed a first-in-man clinical
study with longitudinal sampling of patients at risk of acquir-
ing pathogens in the lower respiratory tract during mechanical
ventilation.

METHODS
Participants
Patients undergoing invasive mechanical ventilation in the inten-
sive care unit (ICU) at Salford Royal Hospital were considered
for recruitment to this study. Inclusion criteria at recruitment
were: age over 17 years; presenting diagnosis of sterile tissue
injury; and requirement for invasive ventilation. Exclusion cri-
teria at recruitment were: clinical suspicion of sepsis; malig-
nancy; expected survival under 48 h. Patient samples were
collected as part of routine emergency care with samples
included in the study if patient consent and/or assent from con-
sultees was given. We destroyed the data where permission was
not granted or achieved.

Study design
Patients were sampled serially over the course of their ICU stay,
up to a maximum of five occasions. Sampling occurred every
2–3 days, between 9:00 and 11:00 on Mondays, Wednesdays
and Fridays to coincide with routine clinical microbiological sur-
veillance of the lower respiratory tract of mechanically venti-
lated patients.5 Clinical details related to the patient diagnoses
and investigations were recorded, including data related to
physiology, radiology, microbiology as well as blood biochemis-
try and haematology. In addition serum was analysed for the
inflammatory cytokines interleukin (IL)-6 (Sanquin Pelikine
Compact Human IL-6 (M1916), Mast Diagnostics, Bootle, UK),
IL-10 (Sanquin Pelikine Compact Human IL-10 (M1910), Mast
Diagnostics, Bootle, UK) and procalcitonin (VIDAS BRAHMS
(30450), BioMerieux, Basingstoke, UK).

Immediately prior to breath sampling airway suction was
performed via the endotracheal tube in order to clear secre-
tions, followed by non-directed bronchial lavage with installa-
tion of 10 mL of sterile 0.9% saline, with the sample aspirated
using a fresh suction catheter, and sent for microbiological
analysis.

Measurements
Breath sampling
A novel sampling apparatus was developed for the specific
purpose of capturing volatiles from the distal intratracheal air of
mechanically ventilated patients (figure 1). Samples were col-
lected by connecting the breath sampling system to a sterile
closed suction catheter (Ref: 215125-5, Kimberly-Clark, Kent,
UK), in turn connected to a bacterial and hydrophobic filter
(Ref: 2000/05, Air Safety Limited, Lancashire, UK) and this to a
sterile adsorbent sampling tube packed with Tenax
TA/Carbotrap (Markes International, Rhondda Cynon Taff, UK)
for off-line analysis. Standard disposable oxygen tubing was
used to connect the components of the breath sampling system.
Endotracheal samples were drawn using a precision air sampling

pump (Escort ELF Pump, Supelco, Dorset, UK) set up at
0.5 L/min. During sample collection the inspired oxygen frac-
tion was set at one.

Three consecutive samples of 0.5 L each were taken per
patient per study visit. Electronic sample tracking was facilitated
using sampling tubes supplied with TubeTAG (Markes
International, as before) radio-frequency ID tag assemblies.
Patient reference study code, time and date was logged for each
sampling TubeTAG for later laboratory identification and ana-
lysis. If samples were not sent to the lab for immediate analyses,
they were stored in a refrigerator at 4°C for a maximum of
7 days.

Sample analysis
Analysis of breath samples was performed by thermal desorp-
tion/gas chromatography/time-of-flight mass spectrometry
(TD/GC-MS, Markes Unity, Markes International, as before and
GCT Premier, Waters Corp, Manchester, UK).
Four-bromofluorobenzene 110 L in N2 1ppmv (Thames Restek,
Bucks, UK) was added to the breath samples as an internal
standard prior to analysis. Between each patient sample a
quality control mix (EPA GRO mix, Supelco, as before), and
tube-blank were run through the system in order to monitor sta-
bility and cleanliness of the system. Adsorbent tubes underwent
two-stage thermal desorption (Series 2 Ultra autosampler,
Markes International, as before) by first heating the adsorbent
tube to 250°C for 10 min and directing the resultant com-
pounds at 50 mL/ min towards a cold trap kept at 1°C. For the
second stage, the cold trap was heated for 10 min at 280°C and
volatiles transferred to the GC column for separation, prior to
analysis by a time-of-flight MS (GCT Premier, Waters, as
before). Flow path temperature was 160°C. An Agilent 6890
oven was equipped with a RTX-5 amine column (30 m,
0.25 mm I.D., 0.5 μm film thickness, Thames Restek, as before).
The GC oven operated on a ramp program with an initial tem-
perature of 40°C (no hold time), ramp to 100°C at 8°C/min,
then ramp to 170°C at 6°C/min and finally to 225°C at 8°C/
min. The total GC run was 26 min. A post run was set up
where the oven was ramped from 225°C to 250°C for 2 min.
The ToF-MS (7000 Resolution FWHM definition) was in elec-
tron ionisation mode, set at 70 eV. The source temperature was
set to 200°C, at a trap current of 200 μA and spectra were

Figure 1 Schematic: breath sampling equipment for ventilated
systems. Intratracheal air is sampled at 1 L/min (regulated by an
air-sampling pump (G)) onto an adsorbent trap (F) via oxygen tubing
(E), a bacterial/hydrophobic filter (D), and a suction catheter (C) placed
in the endotracheal tube (A) via the standard access port (B).
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recorded in dynamic range extension mode at 10 scans/s over a
range of 50–650 m/z.

Microbiology
A dilution method5 was used with each lavage fluid sample to
give a quantitative bacterial count with a cut-off of 104 colony
forming units/mL. In summary, 0.5 mL of vortexed sample was
pipetted into 5 mL of diluent and mixed. Using a 10 μL plastic
loop, sample was inoculated onto a range of selective agar
media and processed using standard laboratory techniques. All
isolates with a growth of more than 10 colonies were reported
as >104 colony forming units/mL. If there was no growth (or
less than 10 colonies) after 48 h incubation, cultures were
reported as ‘no significant growth’.

Data analysis
Clinical data were summarised using descriptive statistics.
Analysis of the GC-MS data followed Metabolomics Standards
Initiative (MSI) reporting standards13 and was performed on the
total ion intensities, with the chromatograms baseline corrected,
aligned, square root scaled and normalised such that the sum of
squares for each chromatogram equalled one as described
previously.14

To investigate the difference in breath profiles between classes
(ie, pathogen present vs pathogen-free) we used principal com-
ponent analysis and its extension ANOVA-mean centre
(ANOVA-MC)15 which is a recently developed model which
aims to overcome the high between-subject variability that
results from the dominant effect of the personal breath profile,
a common problem in breath studies. The results were validated
using a permutation test as described in ref 15. For further
details please see the online supplementary methods. The
ANOVA-MC analysis was performed on each time point separ-
ately, in order to see whether any separation between classes
was consistent across time points. This is important because
multivariate analysis performed on data sets containing large
numbers of variables is associated with a high risk of overfit-
ting.16 An appropriate validation is therefore always needed to
confirm whether the pattern revealed by the data analysis is
genuine or the result of overfitting. We therefore subjected our
data to two forms of validation; internal (same time point) val-
idation using bootstrap resampling and permutation test, and
external (later time point) to examine whether the separation
between classes was repeated over time. The loadings plots of
the ANOVA-MC model at each of the five time points were
compared and VOCs with significantly high loadings across all
time points were considered as potentially discriminatory vari-
ables. The full mass spectra of these compounds were extracted
by using a multivariate curve resolution-alternating least square
procedure and tentative identifications (MSI level 217) assigned
by comparing the pure spectra with the National Institute of
Standards and Technology 02 (NIST 02) library.

RESULTS
Samples were collected from 54 patients and assent obtained for
46 consultees between January and July 2010. Demographic
details are shown in table 1

The first sampling day for 33 (71%) patients was within
2 days of admission to the ICU, and for 2 (4%) it was more
than 10 days. Twenty-six (57%) patients provided breath
samples on at least two sample days, and eight (17%) provided
five samples, over the course of 10 days. There were a total of
107 sample days. Details of individual patient-sampling days
and microbiology results are given in the online supplementary

table. Thirty-one (67%) patients had negative respiratory and
blood culture samples at baseline, and 20 (43%) remained
culture-negative for the duration of the study, although only 2
of these were sampled on more than two occasions. The most
commonly isolated pathogens were Haemophilus influenzae (in
12 samples from 10 patients) and Staphylococcus aureus (18
samples from 10 patients). There were no differences in age,
gender or frequency of significant medical comorbidity between
those with and without infection (either at baseline or at any
time).

When the data from time point 1 were initially analysed by
principal component analysis no evidence of separation between
samples from pathogen-positive and pathogen-negative patients
was observed; the signal was dominated by the personal breath
signature, with individual patient samples clustering very closely
together. When ANOVA-MC transformation was applied
however, a clear separation was seen between data from infected
and non-infected patients, and furthermore this separation was
replicated when data from the other four time points were ana-
lysed in this way (figure 2). A loadings plot that illustrates the
relative contributions of the chromatographic peaks to this sep-
aration at each time point is shown in figure 3. It can be seen
that several of these peaks have high loadings for each model
(arrows). Many of these peaks could not be identified, but puta-
tive identification (MSI level 2) was possible for some by match-
ing retention time and GC-MS data against an external
metabolite library (NIST 02). Compounds found to be lower in
concentration in the breath of infected versus non-infected
patients include (database reverse match factor in parentheses;
perfect match=1000) ethanol (929), 2-methyl cyclopentanone
(809), heptane (785) and N-cyclohexyl-N0(2-hydroxyethyl)thio-
urea (546); while those found in higher concentration included
3-carene (913), n-butyric acid 2-ethylhexyl ester (856), nonanal
(833) and 2,6,11,15-tetramethyl-hexadecane (780).

The internal validation procedure using bootstrap resampling
and the corresponding permutation tests suggests a very low
chance of false-positive and an even lower percentage of false-
negative results as shown in table 2. For example, at the first

Table 1 Demographics of the 46 patients included in the study

N=46

Age mean (SD) 49 (19)
Female n (%) 19 (41)
Ethnicity n (%)
White 43 (93)
Asian 2 (4)
Not recorded 1 (2)

Reason for ICU admission n (%)
Acute brain injury 41 (89)
Gastrointestinal bleeding 2 (4)
Pancreatitis 1 (2)
Postpacing wire insertion 1 (2)
Unexplained anaemia/acidosis 1 (2)

Comorbidities*
None 28 (61)
Cardiovascular 12 (26)
Diabetes mellitus 5 (11)
Respiratory 5 (11)
Cerebrovascular 2 (4)
Renal disease 1 (2)

*Six patients had more than one comorbidity.
ICU, intensive care unit.
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sampling day the model sensitivity (true positive rate) showed
an average of 98% and specificity (true negative rate) of 97%.
The sensitivity, and to a lesser extent the specificity, decreased at
the later sampling days, almost certainly due to the decreasing
numbers of patients sampled at later time points.

Sampling was performed without incident throughout, except
for one occasion where the procedure had to be interrupted due
to the patient rousing, and the patient settled quickly before
sampling recommenced successfully.

Multivariate analysis (independent t test using log10 transformed
data) showed none of the blood inflammatory biomarkers mea-
sured (procalcitonin, IL10, IL6, Il10/6 ratio, total white cell count)
predicted the presence of lower respiratory tract pathogens.

DISCUSSION
This is the first study to our knowledge that reports a systematic
investigation of breath profiles in severely ill ventilated patients for
VOC changes associated with the presence of lower respiratory
tract pathogens. Multivariate analysis, after compensation for the
large personal VOC signature, clearly showed separation of breath
VOC profiles between patients with and without pathogens. Our
confidence that these represent true differences is increased by two
forms of validation. First, permutation testing demonstrated that
the chance of false discovery was very low, especially at the earlier
time points where sample numbers were large. Second, those
VOCs that contributed most to the classification were observed
across all five time points. Future work now should aim to provide
true external validation using samples collected in an independent
group of patients, recruited from other ICUs.

We chose to address a very clearly defined clinical question
in this study: whether the volatile metabolites from breath pro-
files were discriminatory in patients with and without clinically
significant numbers of lower airway pathogens. This is linked
to, but not the same as, clinical terms such as infection and

VAP. However such terms are themselves composite measures
defined on the basis of a combination of clinical factors,
whereas we felt that for our proof of concept we needed a
more defined pathogen surveillance-based outcome. What we
have demonstrated is that breath VOC analysis now merits inves-
tigation as a potentially rapid, minimally invasive and reliable
alternative to lower respiratory tract surveillance using non-
directed bronchial lavage. The relatively high number of patients
found to have pathogens present at the initial sampling days
(33%) corroborates previously reported data and therefore high-
lights the need for fast methods in high-risk clinical settings. In
addition, with this proof of concept we would have more confi-
dence in suggesting breath analysis now also merits further study
in the setting of lung infection-related syndromes such as VAP, in
association with more invasive reference standards such as semi-
quantitative microbiological culture and protein biomarker mea-
surements from bronchoalveolar lavage samples.18

It is worth considering the origin of the VOC changes that we
have demonstrated. There is much literature on pathogen-related
VOCs isolated in vitro but these have not been shown to be diag-
nostically useful in vivo (reviewed in ref. 9). It may be that the
dominating metabolic influence on the breath VOC profile in
infection is not related solely to the pathogens, but to the inflam-
matory sequelae. Some of the VOCs that we have putatively identi-
fied as markers do have some precedence in the literature and
support this hypothesis. We demonstrated ethanol levels were
lower in the pathogen-positive group, in keeping with Rai and col-
leagues who demonstrated that low exhaled ethanol levels were
found in the exhaled breath condensate of patients with acute
respiratory distress syndrome.19 Aldehydes and methylated
alkanes have repeatedly been associated with oxidative stress and
inflammation,10 20–22 and indeed we identified higher levels of
such compounds (nonanal and 2,6,11,15-tetramethyl-hexadecane)
in the pathogen-positive patients.

Figure 2 The ANOVA-mean centring approach was used to successfully adjust for the individual signature. By analysing the five sampling days
separately, clear separation between samples from infected (solid circles) and non-infected (open triangles) patients can be seen. PCA, principal
component analysis; PC, principal component; TEV, total explained variance.
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For this proof of concept study we studied a group of patients
with sterile tissue injury in order to minimise the effect of con-
founding comorbidities, in particular patients admitted due to
complications of acute or chronic lung disease and hence
perhaps with altered airway microbiomes at admission.
Although four of our participants had asthma and two COPD,
this was not the reason for admission, and indeed while three of
these six did have pathogens present at the time of first sam-
pling, this proportion was not different from the rest of the
cohort (where 12 of 40 grew pathogens in the first sample).

Advantages of our sampling methodology include: first, it was
developed specifically to enable us to sample from beyond the
endotracheal tube and hence to exclude air from the upper
respiratory tract. Second, the procedure was safe and relatively
simple to perform by a trained researcher embedded within the
critical care environment, without interfering with routine
patient-focused care and procedures. Third, our procedure was
minimally invasive and the analytical methodology by GC-MS
can return results within a matter of hours, compared with days
with traditional culture methods. Further refinement of the sam-
pling process should aim to simplify it yet further, potentially
by moving the sample point further downstream, away from the
patient. Refinement of breath analysis would aim to speed up
the process, ideally towards online analysis for example using
electronic nose technology, as has been tested with some success
in adult respiratory distress syndrome.23 24 In the future when
highly diagnostic markers are discovered these can be assayed
directly at the bedside using simple bioassays targeted at these
discriminatory molecules.

In conclusion we have demonstrated that volatile metabolites
in the breath of ventilated patients at high risk of developing
VAP show distinct patterns that enable the differentiation of
patients with and without pathogens in the airway. If these find-
ings are replicated in independent prospective cohorts then inte-
grative clinical protocols should be developed for testing in this
critically ill patient population, with the aim of improving
disease stratification and treatment selection.
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Supplementary Methods – Data analysis 

 

ANOVA-mean centre (ANOVA-MC); the model 

ANOVA-MC (1) is an extension to principal component analysis (PCA) (2). The aim of ANOVA-MC is to 

fit the data obtained from a single factor, one-way ANOVA experiment design with the problem of 

having high between-subject variability and to allow discovery of the underlying pattern which 

relates to the experimental question(s). The PCA model decomposes the observed data matrix (e.g. 

the GC-MS data matrix obtained from breath VOC analysis) X into the product of a scores matrix T 

and a loadings matrix P, with the unfitted error put into a residue matrix E as shown in the eq (1): 

𝑿 = 𝑻 × 𝑷𝑇 + 𝑬  eq(1) 

The pattern in the samples is presented in T while the contribution of the variables to such pattern is 

presented in P. 

In order to prevent T to be dominated by the high between-subject variations, ANOVA-MC adds a 

pre-processing step and uses the pre-processed data matrix Xanova_mc instead of X subject to PCA, 

given in eq(2).  
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  eq(6) 

In which 1i (i=1,2,…,c)  is a column vector of 1s and the length of each vector equals the number of 

samples of each class; mi
T (i =1,2,…,c) is a row vector which is the mean vector of all the samples of 

class i. The mean vectors are all calculated from mean centred X. The residual matrix mcanova_ε  is is 

obtained by firstly mean centring the original data matrix, then calculating the mean of each subject 

and subtracting them from the corresponding rows (samples) as shown in eq(7).  
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In which 1j (j =1,2,…,s)  is a column vector of ones and the length of the vector equals the number of 

samples of the test subject j; aj
T  is a row vector which is the mean vector of all the samples collected 

from the test subject j.  

If there were no significant dynamic effect between the repeated measurements of the same 

subject, mcanova_ε is essentially the variation caused by experiment itself, e.g. sampling error, 

instrument measurement error etc. Analysing it together with the Xf is equivalent to superimposing 

the between-group difference onto the unavoidable variance introduced by the experiment and 

assessing the significance level of the between groups variance. Xf could either be added to the 

residual matrix mcanova_ε  back and then have PCA performed on it, or subjected to decomposition 

directly to obtain the loadings first, then mcanova_ε  added back and projected into the subspace via 

the loadings. In this study, we employed the ANOVA-MC by using the approach adding mcanova_ε  

back to Xf. 

Validation procedure for ANOVA-MC 

In ANOVA-MC, the labelling information about which samples belong to which group has been used 

when performing the localised mean centring. Therefore, the mean matrix of interest itself (Xf) has 

become a latent factor which would cluster samples into expected groups according to their class 

labels, thus there is no question about whether the samples from different groups could be 

separated from each other in the PCA model applied to such testing matrix. The question arises as to 

whether such separation is statistically significant when comparing it to the background variations, 

i.e. the residue matrix and, more importantly, the chance that such separation shown in the PCA 
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model had been a false discovery. We employed a validation procedure based on random re-

sampling and permutation. We firstly assumeds that there were c known classes and the results of 

ANOVA-MC had showed a clear separation between these classes which matched the class labels 

well, and that k PCs are required to separate all the known classes (ideally k should be no greater 

than c - 1). The aim of the validation is to assess the reproducibility of the separation between the 

groups. This is achieved by randomly re-sampling the data sets R times to generate R different 

subsets of the data. In this study we employed bootstrap re-sampling strategy (3) and performed 

1,000 iterations. Each subset of the data was then analysed by the method to be validated. The K-

means clustering analysis (4) was then performed on the final PCA results using a sufficient number 

of PCs which were able to separate the classes. The number of clusters was set to c and the initial 

cluster centroid positions set to be the mean of each class, calculated from the subset of samples 

using the known group labels. This way the clusters identified by the K-means clustering should have 

a 1-to-1 correspondence with the expected classes. A pattern with the known classes well separated 

from each other would be expected to see a high consistency between the known class labels and 

the labels identified by K-means clustering. Such high consistency should also be reproducible for the 

models which were built on different subsets of samples. By contrast, if the observed separation was 

caused by chance or there was no genuine separation the results of the K-means clustering would be 

rather unpredictable. If there was no true underlying difference between the expected classes, the 

PCA scores obtained would be expected to be a homogeneous mixture and the clusters identified by 

the K-means clustering merely arbitrary collections of samples, depending on the relative distance 

between them, and there should be little to no agreement between the expected group labels and 

those assigned by the K-means clustering. Thus for each subset of the data obtained by the random 

re-sampling, the same analysis as described above was repeated a second time by using the same 

data but with the class labels randomly permuted, i.e. each sample was randomly assigned a class 

membership. The consistency between the known class labels and labels identified by K-means 

clustering were calculated both for the model using the original labels, and the one using the 
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permuted labels. If the separation between the known classes were genuine, the label consistency 

of the models using the original labels (the observed consistency) should be always higher than 

those using the permuted labels (the null consistency). An empirical p-value can be derived by 

counting the number of cases when the null consistency value had been higher than the observed 

consistency value and divide it by R. In addition, a confusion matrix can be calculated by comparing 

these two types of labels. In the confusion matrix, each row contains the percentage of the samples 

in one particular cluster coming from each of the known class while each column contains the 

percentage of the samples in one particular class allocated into each of the clusters identified by the 

K-means clustering. Such a confusion matrix gives a more detailed information of the distribution of 

the classes, e.g. which class(es) were better separated from others and which classes may have 

certain amount of overlap between them, similar to the confusion matrix provided by supervised 

classification models. 
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Subject 
Number Sample day 

    

 

1 2 3 4 5 KEY: 
   

          ICU001 GBS 
    

AF Aspergillus fumigatus 

ICU002 
     

C Citrobacter species 
 ICU003 

     
ECl Enterobacter cloacae 

ICU004 
 

C; SL 
   

ECo Escherichia coli 
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ICU005 HI 
    

EF Enterococcus faecium 

ICU008 HI 
    

GBS Group B Streptococcus 

ICU009 
  

KO 
  

GCS Group C Streptococcus 

ICU010 HI; SA 
 

HI; SA 
  

HI Haemophilus influenzae 

ICU011 
 

HI; Y 
   

HP Haemophilus parainfluenzae 

ICU012 
  

SA 
  

KO Klebsiella oxytocia 
 ICU013 

  
AF; Y 

  
KP Klebsiella pneumoniae 

ICU014 
     

PA Pseudomonas aeruginosa 

ICU016 SA SA 
   

PP Pasteurella pneumoniae 

ICU017 ECl; PA ECl; PA 
   

Ps Pseudomonas species 

ICU018 
     

SA Staphylococcus aureus 

ICU019 
     

SL Serratia liquifaciens 
 ICU020 

     
SP Streptococcus pneumoniae 

ICU021 SA SA 
   

Y Yeast (unidentified) 
 ICU022 

         ICU023 
 

EF 
       ICU024 

 
HI;SP 

       ICU026 
         ICU027 SA 

        ICU028 SA; HP SA; SP; PP SA; HP SA 
     ICU030 

 
SA; Y 

       ICU031 SA HI KP 
      ICU032 

         ICU033 
         ICU034 
         ICU035 
         ICU036 HI 

        ICU037 HI; SP 
        ICU038 

         ICU039 
         ICU040 
         ICU041 
         ICU043 
 

HI 
       ICU045 

         ICU046 
         ICU047 
         ICU048 
 

SA 
 

SA Ps 
    ICU049 

 
EC 

       ICU052 
         ICU053 SA; SP SA 

 
ECl 

     ICU054 GCS 
        ICU055 HI SA; ECo 

 
ECo ECo 

     

Supplemental Table: All time points are shown where a breath sample was collected for each 

patient.  Also shown are the concomitant positive microbiological cultures, with the organism(s) 

isolated identified by abbreviations, shown in full in the key. 


	Surveillance for lower airway pathogens in mechanically ventilated patients by metabolomic analysis of exhaled breath: a case-control study
	Abstract
	Introduction
	Methods
	Participants
	Study design
	Measurements
	Breath sampling
	Sample analysis
	Microbiology

	Data analysis

	Results
	Discussion
	References


