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Idiopathic pulmonary fibrosis (IPF) is a
devastating disease with a poorly under-
stood pathogenesis and a rising inci-
dence.1 Recently, an important role for
bioactive lipids such as sphingosine-1-
phosphate (S1P) and lysophosphatidic
acid (LPA), which have a diverse range of
cellular functions including proliferation,
cell death, adhesion and migration, has
emerged. Both S1P and LPA are increased
within the bronchoalveolar lavage fluid of
patients with IPF2 3 and levels of sphingo-
sine kinase1/2 (SPK1/2), which catalyses
the synthesis of S1P from sphingosine,
correlate negatively with survival in
patients with IPF,4 highlighting an import-
ant role in disease.

Studies have shown that there is cross-
talk between bioactive lipids such as S1P
and LPA and the potently pro-fibrotic
cytokine transforming growth factor β
(TGF-β), which is known to be fundamen-
tal to IPF pathogenesis.5 Both S1P and
LPA may promote lung fibrosis via activa-
tion of TGF-β in multiple cell types.6–8

Activation of TGF-β by S1P and LPA
occurs via signalling through their respect-
ive G-protein coupled receptors. In vivo
animal studies have shown that loss of
such receptors, including LPAR1, LPAR2
or S1P3 receptors, can ameliorate
bleomycin-induced lung fibrosis in
rodents.3 9 10 Furthermore, expression of
SPK1/2 is TGF-β dependent,4 highlighting
a positive feedback loop that could per-
petuate fibrogenesis.

In addition to bioactive lipids promot-
ing TGF-β activation and its downstream
functional effects, there is emerging evi-
dence that both the bioactive lipids S1P
and LPA, as well as TGF-β itself, inhibit
autophagy. Autophagy is a cellular process
that degrades cytoplasmic substrates and
organelles to obtain energy and metabolic
building blocks. It is necessary for the

homeostasis of organelle integrity, clear-
ance of aggregated and misfolded pro-
teins, and for tissue remodelling during
development and infection resistance.
Lung tissue obtained from patients with
IPF shows reduced autophagic processes
through the actions of TGF-β on mechan-
istic target of rapamycin (mTOR),11

which is a central negative regulator of
autophagy. Supporting a role for mTOR
and autophagy in fibrogenesis, mTOR
levels are increased in an in vivo model of
systemic sclerosis.12 Likewise, S1P can
reduce autophagy through an
mTOR-dependent pathway.13 Importantly,
inhibiting mTOR, and therefore increas-
ing autophagy, is sufficient to reduce
bleomycin-induced fibrosis in the lung.14

In this issue of Thorax, Huang and col-
leagues show that overexpression of S1P
lyase (S1PL), which degrades S1P and
therefore inhibits S1P signalling, can
increase markers of autophagy in lung
fibroblasts. Furthermore, using S1PL+/−

mice they demonstrate increased
pulmonary S1P levels, reduced markers of
autophagy and an enhanced fibrotic
response to bleomycin further supporting
a role for S1P and autophagy in the devel-
opment of tissue fibrosis, and the authors
suggest that S1PL is, therefore, an
endogenous suppressor of pulmonary
fibrosis.15 Intriguingly, however, the
authors also demonstrate both TGF-β and
bleomycin lead to increased expression of
S1PL, and furthermore, that levels of
S1PL are increased in lung tissue and lung
fibroblasts obtained from patients with
IPF. This would suggest that if S1PL is an
endogenous suppressor of pulmonary
fibrosis, in many cases the response is
either insufficient or futile in patients with
IPF. Fundamentally, the authors show that
increased levels of S1PL messenger RNA
in peripheral blood mononuclear cells
were associated with higher diffusing cap-
acity of lungs for carbon monoxide
(DLCO) and improved survival in patients
with IPF,15 suggesting that augmenting
autophagy in pulmonary fibrosis may be
an attractive therapeutic response.
It is likely that modulating the S1P

pathway through increasing S1PL is going

to be challenging, if possible at all, and
would require S1PL overexpression
through gene therapy as we are not
aware of any molecules that specifically
augment S1PL in vivo. S1PL inhibitors
have recently been developed for the
treatment of multiple sclerosis16 and
understanding their effects in models of
fibrosis will be important in light of the
study by Huang et al.15 Therefore, inves-
tigating molecules that target the down-
stream effects of the S1P pathway may
hold more promise.

Nintedanib, already approved for clinical
use in IPF, has recently been shown to
exhibit antifibrotic effects partly through
increased autophagy.17 Furthermore, rapa-
mycin and metformin, both of which are
already used clinically in non-fibrotic dis-
eases, have recently been shown to impact
the mTOR pathway and increase autop-
hagy,18 suggesting that they may have
potential for repurposing in IPF.
Rapamycin, which targets the mTOR
pathway, is widely used as an antirejection
therapy following kidney transplant. It has,
however, shown efficacy as an antifibrotic
drug in both the lung and skin in in vivo
models.12 19 Targeting autophagy with
rapalogues has been tried in patients with
IPF,20 and although the results of the evero-
limus study did not support its use, everoli-
mus inhibits only the mTORC1 complex
and it is possible that dual mTOR complex
inhibition is required. Metformin may have
even more potential as an adjunctive
therapy in fibrotic disease, it is a widely pre-
scribed antidiabetic therapy with a thera-
peutic and safety profile that is well known
and it has demonstrable antifibrotic effects
in various organ systems.21 22 In the lung,
metformin is effective at reducing fibrotic
airway remodelling in response to both
bleomycin and allergen challenge.23

Over and above the primary mechanis-
tic insights into S1PL in the development
of IPF, the paper by Huang et al15 high-
lights some important issues in our quest
to understand, and better treat, IPF. First,
the increased expression of S1PL in IPF
does not indicate it is involved in the
pathogenesis of disease and emphasises
the importance of functional experiments
to complement observational studies.
Second, they identify bioactive lipid-
mediated autophagy as an important
pathway in the pathogenesis of IPF, and
finally, this study demonstrates that under-
standing the basic mechanisms of disease
may help identify currently available
drugs that could hold promise if repur-
posed for the treatment of IPF.
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