A17

Abstract S28 Table 1 Change from baseline at 32 weeks						
	Liraglutide 3.0 mg	Placebo				
	n = 180	n = 179				
	Observed	Observed				
	means (LOCF)	means (LOCF)	<i>p</i> -value			
AHI ³ (events/h)	-12.2	-6.1	$p = 0.0150^1$			
Oxygen desaturation						
≥4% index (events/h)	-9.5	-5.1	$p = 0.0608^1$			
Total sleep time (min)	20.7	18.5	$p = 0.1629^1$			
Wake time after						
sleep onset (%)	-4.0	-3.7	$p = 0.0994^1$			
Body weight (%)	-5.7	-1.6	$p < 0.0001^1$			
≥5% body weight						
loss (%)	46.4	18.1	$p < 0.0001^2$			
>10% body weight						
loss (%)	22.4	1.5	$p < 01.0001^2$			
HbA _{1c} (%)	-0.4	-0.2	$p < 0.0001^1$			
SBP (mmHg)	-3.4	0.4	$p = 0.0003^1$			

¹ANCOVA model

Associated Events were used

3.0 mg produced significantly greater weight loss compared with placebo (Table) and enabled more individuals to reach \geq 5% and \geq 10% weight loss targets after 32 weeks (p < 0.0001, both). Oxygen saturation, polysomnographic measures, HbA_{1c} and systolic blood pressure (SBP) at 32 weeks are summarised (Table). Nausea and diarrhoea were the most common adverse events with liraglutide 3.0 mg (27% and 17% of individuals, respectively).

Discussion Liraglutide 3.0 mg produced significantly greater reductions than placebo in AHI, body weight, SBP and HbA_{1c} in obese individuals with moderate/severe OSA and was generally well tolerated.

'Blood and spit' — what to measure in AECOPD

529

PROGNOSTIC VALUE OF PLATELET COUNT IN PATIENTS ADMITTED WITH AN ACUTE EXACERBATION OF COPD (AECOPD)

¹C Echevarria, ¹J Steer, ²GJ Gibson, ¹SC Bourke. ¹North Tyneside General Hospital, North Shields, Tyne and Wear; ²Newcastle University, Newcastle, Tyne and Wear

10.1136/thoraxjnl-2014-206260.35

Introduction In an observational cohort of patients admitted with AECOPD, thrombocytosis was associated with inpatient and 1-year mortality. We aimed to validate, and explore mechanisms for, this association within our original DECAF cohort (n = 920).

Methods Admission platelet counts were categorised as low (<150), normal (150–400), or high (>400) x10⁹ cells/mm³ and odds ratios assessed for inpatient and, among those surviving to discharge, 1-year mortality (normal platelet count=reference). For inpatient mortality, platelet category and DECAF indices were included in multivariate logistic regression. The areas under the ROC curves for DECAF and DECAF+Platelets were compared by the method of DeLong. Associations with thrombocytosis were analysed using Mann-Whitney or Fisher's exact test. Causes of death at 1-year due to respiratory, cardiac or malignant disease were recorded.

Results Thrombocytosis was associated with inpatient (OR 1.83, 95% CI 1.12–3.00, p = 0.016) and 1-year mortality (OR 1.62 95% CI 1.09–2.30, p = 0.017). Thrombocytopenia was associated with inpatient (OR 3.5, 95% CI 1.51–8.12, p = 0.004), but not 1-year mortality (OR 1.81, 95% CI 0.76–4.312.08, p = 0.181). On multivariate analysis, thrombocytosis (OR 1.85, 95% CI 1.03–3.33 p = 0.039) and thrombocytopenia (OR 3.00 95% CI 1.09–8.24 p = 0.033) independently predicted inpatient mortality, but did not improve predictive power of DECAF (AUROC: DECAF=0.86, DECAF+Platelets=0.86; p = 0.93).

Thrombocytosis was associated with a higher white cell count (p<0.001) and eMRCD score (i.e. more breathless when stable; p = 0.001), lower: albumin (p = 0.004), BMI (p = 0.002), FEV1 (p = 0.010), haemoglobin (p<0.001), and a lower proportion of women (p = 0.004), and patients with eosinopenia (<0.05 x 10^9 /l) (p = 0.008), cardiac death (p = 0.044), current smoking (p = 0.046), AF (p = 0.029) and diabetes (p = 0.006). Thrombocytosis was not related to cardiovascular disease, prior exacerbation and readmission rates or LTOT use, admission PaO₂, pH or NIV, or length of stay.

Discussion Thrombocytosis was an independent predictor of both inpatient mortality and, amongst survivors to discharge, 1-year mortality. Thrombocytosis was not associated with cardiovascular disease and the higher 1-year mortality was not due excess cardiovascular or cancer deaths, suggesting that other mechanisms are responsible. Whilst thrombocytosis was not associated with LTOT use or PaO₂, it was associated with other indices of disease severity, including breathlessness and lower FEV1, BMI and albumin level.

REFERENCES

- 1 Harrison *Thorax* 2014
- 2 Steer Thorax 2012

S30

RED CELL DISTRIBUTION WIDTH AS A PREDICTOR OF HOSPITAL MORTALITY IN ACUTE EXACERBATIONS OF COPD (AECOPD)

¹C Echevarria, ¹J Steer, ²GJ Gibson, ¹SC Bourke. ¹North Tyneside General Hospital, North Shields, Tyne and Wear, UK; ²Newcastle University, Newcastle, Tyne and Wear, UK

10.1136/thoraxjnl-2014-206260.36

Introduction An increased red cell distribution width (RDW), a routinely available index of the variability of erythrocyte size,

Platelet count	Total	Inpatient deaths, n	Deaths at 1 year, n	Respiratory deaths, n	Cardiovascular deaths, n	Cancer deaths, n
(x10 ⁹ cells/mm ³)	patients	(% of total)	(% of total)	(% of all deaths at 1 year)	(% of all deaths at 1 year)	(% of all deaths at 1 year)
		8	16	13	2	1
<150 32	25.0	50.0	81.3	12.5	6.3	
		62	203	153	24	15
150-400	713	8.7	28.5	75.4	11.8	7.4
		26	72	61	3	5
>400	175	14.9	41.1	84.7	4.2	6.9

Thorax 2014;**69**(Suppl 2):A1–A233

²Logistic regression model

³Definitions of apnoea and hypopnoea from the

²⁰⁰⁷ AASM Manual for the Scoring of Sleep and