Vitamin D and lung function

Afzal et al1 recently reported that low plasma 25-hydroxyvitamin D is associated with a decline in lung function and chronic obstructive pulmonary disease (COPD). While this finding persisted after adjustment for possible confounding variables, and concurs with the findings of others,2 we believe it might still be spurious.

First, we suggest the association between plasma vitamin D and lung function is subject to a threshold effect, evident in both the cross-sectional data (figures 1 and 3, reference 1) and prospective data (figure 2 and table 2—see our figure 1 below), and primarily limited to the lowest two quintiles (ie, only for the 1st–2nd quintiles can a relationship be consistently identified). By contrast, for the 3rd–5th quintiles, which roughly correspond to normal vitamin D levels (>50 nmol/L), the relationship between vitamin D levels and lung function is no longer apparent (ie, flattens in figures 1, S1 and S2 or fails to significantly diverge in figures 2, 3, 4, S3 and S4, with overlapping CIs, reference 1). The presence of a threshold effect is critically important as ‘adjustment’ for relevant confounding variables (eg, smoking dose, age and height) assumes a linear relationship, not a threshold effect where stratification to match for potential confounding variables better identifies confounding or mediating effects.

Interestingly, the relationship evident for lung function decline in the 1st–2nd vitamin D quintiles (figure 2) is all but lost in the sensitivity analysis (after adjustment for height and gender, figure S3).1 Second, we are also concerned that the vitamin D association with FEV$_1$%predicted is consistently mirrored for FVC%predicted (see published figures and our figure below), but has no effect on the FEV$_1$/FVC ratio (ie, cornerstone of the COPD definition).1, 2 This global reduction in lung function could be explained by the mediating/confounding effects of one or a combination of reduced physical performance (frailty)3 or increased systemic inflammation,4 both of which correlate with low vitamin D levels (<50 nmol/
L) in older adults. In a recently reported prospective population study, increased systemic inflammation was associated with greater declines in lung function. Given the effect of low vitamin D on lung function decline is sensitive to smoking status (see our figure 1 below), it is difficult to simply link vitamin D level with COPD.

These observations suggest to us that despite the excellent study design of the Danish study (large sample size, comparable validating cohort, prospective data and statistically significant differences), further analysis (including c-reactive protein (CRP) levels) is required to better understand the role of vitamin D status in COPD.

R P Young, R J Hopkins
1School of Biological Sciences, University of Auckland, Auckland, New Zealand
2Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand

Correspondence to Dr Robert P Young, Respiratory Genetics Group, PO Box 26161, Epsom, Auckland 1344, New Zealand; roberty@adhb.govt.nz

Contributors RPY conceived of the idea, researched the literature and wrote the first draft, edited all drafts and approved the final version of this correspondence. RJH researched the literature, edited all drafts and approved the final version of this correspondence.

Competing interests RPY, and the funding of his research, has been supported by grants from the University of Auckland, Auckland District Health Board, Auckland Medical Research Foundation, Health Research Council of New Zealand, Lotteries Health and Synergex Biosciences Ltd. Synergex Biosciences Ltd holds patents for gene-based risk testing for lung cancer susceptibility.

Provenance and peer review Not commissioned; internally peer reviewed.

Received 4 January 2014
Accepted 9 January 2014
Published Online First 31 January 2014

REFERENCES

Figure 1 Decline in lung function according to smoking status and quintile of vitamin D level in a prospective cohort.

Decline in Lung Function (%predicted/year) according to smoking status.

Quintiles of Plasma Vitamin D levels (nmol/L) - Median (IQR)

Competing interests RPY, and the funding of his research, has been supported by grants from the University of Auckland, Auckland District Health Board, Auckland Medical Research Foundation, Health Research Council of New Zealand, Lotteries Health and Synergex Biosciences Ltd. Synergex Biosciences Ltd holds patents for gene-based risk testing for lung cancer susceptibility.

Provenance and peer review Not commissioned; internally peer reviewed.

Received 4 January 2014
Accepted 9 January 2014
Published Online First 31 January 2014

REFERENCES

Figure 1 Decline in lung function according to smoking status and quintile of vitamin D level in a prospective cohort.

Decline in Lung Function (%predicted/year) according to smoking status.

Quintiles of Plasma Vitamin D levels (nmol/L) - Median (IQR)

Competing interests RPY, and the funding of his research, has been supported by grants from the University of Auckland, Auckland District Health Board, Auckland Medical Research Foundation, Health Research Council of New Zealand, Lotteries Health and Synergex Biosciences Ltd. Synergex Biosciences Ltd holds patents for gene-based risk testing for lung cancer susceptibility.

Provenance and peer review Not commissioned; internally peer reviewed.

Received 4 January 2014
Accepted 9 January 2014
Published Online First 31 January 2014

REFERENCES
Vitamin D and lung function

R P Young and R J Hopkins

Thorax 2014 69: 769-770 originally published online January 31, 2014
doi: 10.1136/thoraxjnl-2014-205101

Updated information and services can be found at:
http://thorax.bmj.com/content/69/8/769.1

These include:

References
This article cites 5 articles, 1 of which you can access for free at:
http://thorax.bmj.com/content/69/8/769.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the
box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/