Bronchiolitis obliterans syndrome leads to a functional deterioration of the acinus post lung transplant

ABSTRACT
Bronchiolitis obliterans syndrome (BOS) limits long-term survival of lung transplant recipients, and airflow obstruction in these patients likely originates in the small airways. 61 double lung transplant recipients performed multiple breath nitrogen washouts to obtain indices of acinar and conductive ventilation heterogeneity (Sacmin, Scond). There was a significant association of BOS status with Sacmin (Kruskal-Wallis; p<0.001) but not with Scond (p=0.1). These results demonstrate that it is the structural alteration of the terminal bronchioles, generating ventilation heterogeneity at the level of the diffusion front, and not the bronchioles located more proximally, that is driving the airflow obstruction that determines BOS status.

Bronchiolitis obliterans syndrome (BOS) in a lung transplant recipient is a form of chronic lung allograft rejection, currently defined by a decline in forced expiratory volume in 1 second (FEV1) of more than 20% in the presence of airflow obstruction (FEV1/FVC<70%). Despite histological evidence of peripheral airways involvement in BOS, physiological measurements of BOS are relatively sparse, with tests of ventilation distribution showing promise for early detection. As spirometry is relatively insensitive and certainly non-specific to changes within the small airways, pathological changes associated with BOS can be better linked to anatomical structures by a dedicated test of ventilation heterogeneity. The aim of this study was to determine the effect of BOS stage on ventilation heterogeneity at the level of the terminal bronchioles versus that generated more proximally.

METHODS
Subject recruitment
Sixty-one bilateral lung transplant recipients (40 male and 21 female) with varying degrees of BOS were recruited for the study.

Multiple breath nitrogen washout (MBNW)
MBNW provides indices that can separate gas mixing in the airways at the level of the diffusion front (Sacmin)—likely to be located around the acinar entrance—and that generated more proximally (Scond); an increase in either Sacmin or Scond reflects an increased degree of ventilation heterogeneity, that is, a deterioration in lung function.

RESULTS
Individual values of Sacmin and Scond against BOS stage can be appreciated from figure 1. All subjects with a BOS stage ≥1 showed a significantly greater Sacmin versus BOS=0 subjects, and BOS=3 patients showed significantly greater Sacmin than BOS=1 or BOS=2 patients (figure 1A). There was no significant dependence of Scond on BOS status (figure 1B). There was a strong correlation of FEV1/FVC with Sacmin (Spearman rho=-0.72; p<0.001) but not with Scond (p=0.097).

DISCUSSION
We have identified a functional correlate of airway obstruction in patients who fit the strict definition of BOS by observing increased acinar ventilation heterogeneity (Sacmin) with BOS stage. Based on mathematical modelling, Sacmin is assumed to be generated around the terminal bronchioles, hence our functional findings are in agreement with recent observations from micro CT on explanted lungs obtained from six patients with BOS undergoing retransplantation. In this preliminary study published in abstract form, obliterating lesions are reported in the airways immediately proximal to the terminal bronchioles, of patients with BOS. Beyond these, a normal airway structure leading into the alveolated zone was observed. One could speculate that excessive narrowing of pre-terminal bronchioles airways shifts the diffusion front, which is the basis of Sacmin measurement. Coincidently, recent mathematical modelling work published in abstract form by Murphy et al indicated that even with up to 50% airway narrowing in the preterminal bronchioles the diffusion front hardly moved (by ~1 generation proximally). This provides compelling support to the fact that the measured Sacmin increases with increasing BOS stage are indeed the result of worsening ventilation heterogeneity generated at the level of the acinar entrance.

Figure 1 Box-and-whisker plots of Sacmin (A) or Scond (B) versus bronchiolitis obliterans syndrome (BOS) status; asterisks indicate significant changes versus BOS=0 subjects. In addition, Sacmin in patients with BOS=1 or BOS=2 was not different from each other but significantly different from Sacmin observed in BOS=0 and BOS=3 patients.
CONCLUSION
In a cross-sectional study, the reduction in
FEV₁ seen with BOS is associated with
functional changes generated around the
acinar entrance.

Bruce R Thompson,1,3 Yvonne M Hodgson,3
Tom Kotsimbos,1 Pam Liakakos,1 Matthew
J Ellis,1 Gregory I Snell,1 Sylvia Verbanck2
1Allergy, Immunology, and Respiratory Medicine,
Alfred Hospital, Melbourne, Australia
2Respiratory Division, University Hospital UZ Brussel,
Brussels, Belgium
3Department of Medicine, Monash University,
Melbourne, Australia
Correspondence to Professor Bruce Thompson;
b.thompson@alfred.org.au

Contributors BRT and SV were involved in the
conception, hypotheses, design of the study,
interpretation of such information, writing the article
and revision prior to submission. YMH, MJE and PL
were involved in data acquisition, analysis of results
and writing of the article. GIS and TK were involved in
subject recruitment, interpretation of results, writing of
the article and revision prior to submission.

Funding BRT would like to acknowledge the
financial support of the National Health and Medical
Research Council of Australia (grants 486101 and
491103).

Competing interests None.

Ethics approval The Alfred Hospital Research and
Ethics Committee.

Provenance and peer review Not commissioned;
internally peer reviewed.

To cite Thompson BR, Hodgson YM, Kotsimbos T,
et al. Thorax Published Online First: [please include Day
Month Year] doi:10.1136/thoraxjnl-2013-204671
Received 13 October 2013
Accepted 17 October 2013
Published Online First 8 November 2013

REFERENCES
Bronchiolitis obliterans syndrome 2001: an update of
the diagnostic criteria. J Heart Lung Trans
of obliterative bronchiolitis after lung transplantation
by indexes of ventilation. Am J Respir Crit Care Med
3 Verbanck S, Paiva M. Gas mixing in the airways and
4 Verleden SE, Vasilescu DM, Willems S, et al. The site
and nature of airway obstruction following lung
transplantation [abstract]. Belgian Transplant Society
2013:P7.
5 Murphy K, Thompson BR, Tawhai M. Assessing the
effect of anatomical structure and gravity on diffusion
front location [abstract]. Am J Respir Crit Care Med
Bronchiolitis obliterans syndrome leads to a functional deterioration of the acinus post lung transplant

Bruce R Thompson, Yvonne M Hodgson, Tom Kotsimbos, Pam Liakakos, Matthew J Ellis, Gregory I Snell and Sylvia Verbanck

Thorax 2014 69: 488-489 originally published online November 8, 2013
doi: 10.1136/thoraxjn-2013-204671

Updated information and services can be found at:
http://thorax.bmj.com/content/69/5/488

These include:

References
This article cites 4 articles, 0 of which you can access for free at:
http://thorax.bmj.com/content/69/5/488#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Bronchiolitis (112)
Bronchitis (235)
Interstitial lung disease (559)
TB and other respiratory infections (1273)
Cardiothoracic surgery (676)
Transplantation (184)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/