
ORIGINAL ARTICLE

Cluster analysis in the COPDGene study identifies
subtypes of smokers with distinct patterns of airway
disease and emphysema
Peter J Castaldi,1,2 Jennifer Dy,3 James Ross,4 Yale Chang,3 George R Washko,5

Douglas Curran-Everett,6 Andre Williams,6 David A Lynch,7 Barry J Make,8

James D Crapo,8 Russ P Bowler,8 Elizabeth A Regan,8 John E Hokanson,9

Greg L Kinney,9 Meilan K Han,10 Xavier Soler,11 Joseph W Ramsdell,11

R Graham Barr,12 Marilyn Foreman,13 Edwin van Beek,14 Richard Casaburi,15

Gerald J Criner,16 Sharon M Lutz,17 Steven I Rennard,18,19 Stephanie Santorico,20

Frank C Sciurba,21 Dawn L DeMeo,1,5 Craig P Hersh,1,5 Edwin K Silverman,1,5

Michael H Cho1,5

▸ Additional material is
published online only. To view
please visit the journal online
(http://dx.doi.org/10.1136/
thoraxjnl-2013-203601).

For numbered affiliations see
end of article.

Correspondence to
Dr Peter Castaldi, Channing
Division of Network Medicine,
Brigham and Women’s
Hospital, 181 Longwood Ave.,
Boston, MA 02115, USA;
peter.castaldi@channing.
harvard.edu

Received 19 March 2013
Revised 17 January 2014
Accepted 22 January 2014
Published Online First
21 February 2014

To cite: Castaldi PJ, Dy J,
Ross J, et al. Thorax
2014;69:415–422.

ABSTRACT
Background There is notable heterogeneity in the
clinical presentation of patients with COPD. To
characterise this heterogeneity, we sought to identify
subgroups of smokers by applying cluster analysis to
data from the COPDGene study.
Methods We applied a clustering method, k-means, to
data from 10 192 smokers in the COPDGene study. After
splitting the sample into a training and validation set,
we evaluated three sets of input features across a range
of k (user-specified number of clusters). Stable solutions
were tested for association with four COPD-related
measures and five genetic variants previously associated
with COPD at genome-wide significance. The results
were confirmed in the validation set.
Findings We identified four clusters that can be
characterised as (1) relatively resistant smokers (ie, no/
mild obstruction and minimal emphysema despite heavy
smoking), (2) mild upper zone emphysema-predominant,
(3) airway disease-predominant and (4) severe
emphysema. All clusters are strongly associated with
COPD-related clinical characteristics, including
exacerbations and dyspnoea (p<0.001). We found
strong genetic associations between the mild upper zone
emphysema group and rs1980057 near HHIP, and
between the severe emphysema group and rs8034191 in
the chromosome 15q region (p<0.001). All significant
associations were replicated at p<0.05 in the validation
sample (12/12 associations with clinical measures and
2/2 genetic associations).
Interpretation Cluster analysis identifies four
subgroups of smokers that show robust associations with
clinical characteristics of COPD and known COPD-
associated genetic variants.

BACKGROUND
The clinical presentation of COPD is heterogeneous.
Smoking-related damage manifests as airway wall
thickening, loss of small airways, emphysematous
lung destruction and a range of extrapulmonary man-
ifestations. However, these specific manifestations
may vary in individual smokers. COPD heterogeneity

has been broadly characterised as emphysema-
predominant and airway-predominant disease,1 2 and
the varying amounts of airway obstruction and
emphysema present in an individual can be described
with quantitative CT measures. In addition to the
emphysema-airway characterisation, additional sub-
types have been proposed in an effort to further
refine our understanding of smoking-related lung
damage. Some of these, such as upper lobe-
predominant emphysema and the ‘frequent-
exacerbator’ subtype, have important consequences
for clinical management.3–5

The most widely accepted current definition of
COPD is that of the Global Initiative for Chronic
Obstructive Lung Disease (GOLD 2007).6 Based
primarily on spirometry, GOLD 2007 confirms the
diagnosis of COPD based on FEV1/FVC and classi-
fies disease severity based on FEV1. This simplicity
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has arguably led to improved recognition, diagnosis and treat-
ment of the disease.6 7 However, the GOLD 2007 criteria do
not fully describe the heterogeneity of COPD,8 9 and the most
recent GOLD 2011 criteria add clinical characteristics to define
new classes.10 GOLD provides clear cut-offs to define presence/
absence of COPD based on FEV1 and FEV1/FVC; however,
spirometric measures, as well as associated CT scan character-
istics such as emphysema, have a continuous distribution in the
population, indicating that the smoking-related damage charac-
teristic of COPD is likely a continuous process that can also be
present in subjects who have not yet developed airflow obstruc-
tion meeting standard criteria.

One rationale for the simplicity of the GOLD 2007 criteria is
that there is substantial overlap between different disease
characteristics and among proposed subtypes. It is a challenge to
synthesise the various smoking-related subtypes proposed in the
literature because subtypes may overlap or be defined in ways
that are not complementary. In an effort to derive data-driven
COPD classifications, investigators have recently employed
unsupervised machine learning approaches.11–13 The benefit of
such approaches is that they employ quantitative methods to
define subtypes, but the challenge in applying these approaches
for clinical subtype identification is that they are designed pri-
marily for data exploration rather than specific hypothesis
testing. As a result, the generalisability and reproducibility of
machine-learned COPD subtype classifications in independent
data samples has been largely unexplored.

We hypothesised that k-means, a widely used unsupervised
clustering method, would identify novel, clinically relevant sub-
types when applied to quantitative chest CT, spirometric and
clinical measures from the COPDGene study. The COPDGene
study is a large epidemiological and genetic study of over
10 000 current and former smokers with and without COPD
that includes demographic and clinical information, spirometry,
genome-wide single-nucleotide polymorphisms (SNP) genotyp-
ing data, and inspiratory and expiratory CT scans. We specified
a priori a set of clinically relevant clinical and genetic variables
that would be used only to evaluate and interpret (but not to
generate) clusters, and we split our data into a training and val-
idation set to provide rigorous assessment of the reproducibility
of our results.

METHODS
Study population
The COPDGene study has previously been described in detail.14

Briefly, between 2007 and 2011, 10 192 non-Hispanic Whites
(NHW, n=6784) and African-American (AA, n=3408) smokers
were enrolled in a multicentre study designed to investigate the
genetic and epidemiological associations of COPD. Subjects
with respiratory disease other than asthma, COPD or emphy-
sema were excluded. All subjects had blood collected for genetic
analysis, and they completed questionnaires, spirometry and
chest CT scans. The institutional review boards of all participat-
ing centres approved the COPDGene study, and written
informed consent was obtained from all subjects.

Sample splitting, feature selection and clustering
In order to assess the validity of cluster solutions, the
COPDGene data were randomly split into equally sized training
and validation sets. All subsequent model building was con-
ducted in the training data, with the validation set used only for
the validation of cluster characteristics and associations.

In this paper, we use the term feature to refer to a variable
that is used as an input for clustering. A set of continuous input

features for k-means clustering, hereafter referred to as the com-
prehensive feature set, was selected to represent key aspects of
COPD-related physiology, particularly spirometry and quantita-
tive chest CT data. Detailed feature descriptions are included in
online supplemental table 1.

Since the quality of clustering results can be improved by
eliminating uninformative features,15 we used two approaches
to generate filtered subsets of the comprehensive feature set
using a top factor and a core feature approach. In the top factor
approach, we identified factors that individually accounted for
5% or greater of the overall variance and then selected the top
loading feature for each factor to constitute the top factor set. In
the core feature approach, we considered spirometric and quan-
titative CT variables from the comprehensive feature set and fil-
tered these variables based on Pearson correlation such that no
variables in the core variable set were correlated at 0.7 or
greater.

k-means clustering was performed using the k-means function
in version 2.13,16 and the stability of cluster solutions was
assessed by average normalised mutual information (NMI) as
assessed by fivefold cross-validation in the training data. Data
were scaled and centred prior to clustering.

Evaluation of cluster significance in the training sample
To prioritise and evaluate the clinical relevance of clustering
solutions, we specified a priori a set of COPD-related measures
and genetic variables to test for association with cluster member-
ship. These variables were not used as inputs to the clustering
process. The COPD-related measures were BODE index,
MMRC dyspnoea score, number of COPD exacerbations over
the previous year and self-report of a lung-related emergency
room visit or hospitalisation over the previous year (lung-related
healthcare use). COPD-related measures were related to cluster
membership using logistic regression or ordinal logistic regres-
sion as appropriate.

Genetic variables consisted of five SNPs previously associated
with COPD at genome-wide significance (COPD SNPs—
rs7671167,17 rs1980057,18 19 rs13180,19 rs8034191,19

rs793720). Genetic associations with cluster membership were
tested by logistic regression using the ‘healthiest’ cluster (ie,
with the highest average FEV1) as the reference, and compari-
sons with other cluster as reference were also performed. As a
sensitivity analysis, all cluster associations were evaluated with
and without adjustment for study centre, GOLD 2007 stage and
GOLD 2011 classifications by including these as covariates in
separate regression models.

Validation of cluster characteristics, clinical and genetic
associations
After prioritising cluster solutions in the training sample by
cluster stability and strength of clinical and genetic associations,
a single clustering result was selected for independent valid-
ation. Clusters were assigned in the validation sample by assign-
ing each subject to the closest cluster centre using the centres
learned by the k-means algorithm in the training sample. T-tests
were used to test for differences in average cluster characteristics
between the training and validation samples, and cluster associa-
tions with the prespecified clinical and genetic measures were
examined as described above. Additional details are included in
the online supplement.

RESULTS
The characteristics of the training and validation samples are
shown in table 1, and the samples are comparable. The
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difference in sample size between the training and validation
samples is due to differences in missing data (see online
supplement).

Defining feature subsets
Factor analysis on the comprehensive feature set identified four
factors that individually accounted for at least 5% of the vari-
ance in the data. Features with the top loadings for these factors
were functional residual capacity (FRC) % predicted, FEV1%
predicted, CT-quantified emphysema at −950 Hounsfield units
(HU) and bronchodilator responsiveness as a % of FEV1. For
the core feature set, correlation filtering yielded a set of four
features—FEV1% predicted, CT-quantified emphysema, seg-
mental wall area% and emphysema distribution (log ratio of
upper third/lower third emphysema).

Prioritising clustering solutions by cluster stability
Cluster stability for the three feature sets is shown in figure 1.
Seven stable clustering solutions with NMI > 0.9 were priori-
tised for further evaluation. We examined the clinical and
genetic associations of these seven solutions in the training
sample. For the comprehensive and top factor feature sets, the
highest stability results were for k=2. These solutions largely
replicated the traditional COPD case–control distinction and
were likely driven by the case–control design and recruitment
strategy of COPDGene.

For the core feature set, highly stable clustering was observed
for a range of k from 2 to 5. Figure 2 shows the characteristics
of the clustering features for the k=3 to k=5 solutions and the
pattern in which clusters emerge as k increases. Based on the
strong pattern of cluster-specific clinical and genetic associa-
tions, the k=4 core feature (CF4) solution was selected for
further validation.

Cluster characteristics
Cluster characteristics for the CF4 solution are shown in table 2.
The four clusters can be characterised as low susceptibility
smokers, mild upper zone emphysema-predominant, airway-
predominant and severe emphysema.

Figure 2 Average values of clustering features from core feature set
solutions k=3 through 5. Arrows indicate relationships between these
k-means derived clusters that share large numbers of individuals.

Table 1 Baseline characteristics of the training and validation
data

Training Validation

N 4187 4101
Age 59.5 (9.0) 59.7 (9.0)
Gender, % female 46.7 45.9
Race, % African-American 32.0 31.4
FEV1, % of predicted 76.9 (25.2) 77.1 (25.2)
FEV1/FVC 0.67 (0.16) 0.67 (0.16)
Pack-years, median (IQR) 39.3 (28.0) 39.7 (27.0)
BMI 28.9 (6.3) 28.9 (6.1)
Emphysema at −950HU, median (IQR) 1.8 (5.8) 2.0 (6.1)
Upper/lower emphysema ratio (IQR) 0.8 (1.1) 0.8(1.2)
Segmental airway wall thickness 61.4 (3.2) 61.4 (3.3)
Upper/lower lobe emphysema difference (IQR) −0.17 (2.0) −0.14 (2.2)
Gas trapping (IQR) 14.5 (24.8) 14.7 (25.3)
GOLD unclassifiable*, % 12.0 12.6
Smoking controls, % 43.8 43.8
GOLD 1, % 8.3 7.7
GOLD 2, % 19.2 19.4
GOLD 3, % 11.3 11.3
GOLD 4, % 5.4 5.3

Values are mean (SD) unless otherwise noted.
*GOLD unclassifiable refers to subjects with a FEV1% predicted <80 but FEV1/FVC
>0.7.

Figure 1 Cluster stability as measured by average normalised
mutual information (NMI) by number of clusters across the three input
feature sets. High NMI values indicate high cluster stability. For the
comprehensive and top factor feature sets, stability is greatest for the
k=2 solution. For the core feature set, very high stability is observed up
to k=5. Dots and SEs bars represent average NMI and SEs over fivefold
cross-validation, respectively. Dots are slightly offset to improve
visualisation.
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Cluster 1: relatively resistant smokers
Cluster 1 represents 38% of the COPDGene training sample
and is characterised by heavy smoking exposure with no or
minimal airflow obstruction, as well as lower emphysema
(p<0.001 for comparison with clusters 2 and 4) and airway
wall thickness (p<0.001 for all cluster comparisons) compared
with the more severely affected clusters. The majority of indivi-
duals in the relatively resistant cluster are control smokers or
GOLD stage 1 (figure 3).

Cluster 2: mild upper zone-predominant emphysema
Cluster 2 represents 15% of the training sample and is charac-
terised by mild airflow obstruction and mild emphysema with
marked upper zone-predominance (p values compared with
other clusters <0.001). The average amount of emphysema in
this group is modest (mean emphysema = 3.31%), though the
range is broad and nearly a quarter of this cluster has greater
than 5% emphysema. As shown in figure 3, most of the indivi-
duals in the mild upper zone emphysema cluster are control
smokers or GOLD stages 1–2, with 15% unclassifiable by
GOLD criteria.

When compared with the relatively resistant cluster, this
cluster was more likely to experience an exacerbation, have a
higher MMRC dyspnoea score and BODE index, and more
likely to have used the emergency room or been admitted to the
hospital for a respiratory issue (table 3). The NHW subjects in
this group show a strong genetic association with rs1980057
near the HHIP gene (p=4.4×10−6). This cluster has a higher
proportion of AAs than the airway-predominant and severe
emphysema clusters (p<0.001) and a higher proportion of
women compared with the relatively smoking-resistant and
severe emphysema clusters (p<0.001).

Cluster 3: airway-predominant disease
Cluster 3 represents 27% of the training sample and is charac-
terised by thicker airway walls, the lowest average emphysema
of all clusters, and high BMI (p<0.001 for all measures). The
overall distribution of GOLD 2007 stages in this group is
similar to the mild upper zone emphysema cluster, with the
exception of a higher proportion of GOLD stage 3 and unclassi-
fiable individuals (figure 3).

This cluster is more likely than the relatively smoking-resistant
cluster to report COPD exacerbations and lung-related health-
care use, and they have higher MMRC score and BODE index
(table 3). It has a significantly higher proportion of women than
the smoking-resistant and severe emphysema clusters
(p<0.001), and the overall strength of genetic associations
between this cluster and COPD SNPs is weak.

Table 2 Cluster characteristics in training and validation data for core feature set cluster solution, k=4

Training sample Validation sample

C1: mean C2: mean C3: mean C4: mean C1: mean C2: mean C3: mean C4: mean

N 1598 623 1122 844 1595 620 1060 826
Age 58.9 58.0* 56.8 65.4 58.7 58.9* 57.3 65.4
Gender, % female 0.44 0.53 0.52 0.40 0.43 0.51 0.53 0.40
Race, % African-American 0.30 0.46 0.37 0.19 0.29 0.45 0.37 0.17
FEV1, per cent of predicted 95.3 81.9 74.9 41.2 95.7 81.6 73.8 42.0
FEV1/FVC 0.76 0.70 0.71 0.42 0.76 0.69 0.71 0.42
BMI 28.7 27.9 31.4* 26.7 28.3 27.6 32.0* 26.8
Pack years 38.0 45.8 42.8 56.8 38.3 46.9 43.1 55.9
Emphysema at −950HU 2.6 3.3 1.3 20.5 2.7 3.6 1.4 20.7
Segmental airway wall thickness 58.8 61.5 64.1 62.7 58.8 61.4 64.2 63.0
Upper/lower emphysema ratio 0.7 6.7 0.6 2.2 0.7 8.3 0.6 2.3
Upper/lower emphysema difference −0.3 1.4 −0.3 2.6 −0.3 1.7 −0.3 2.9
Gas trapping† 12.9 16.5 13.4 52.1 13.1 17.3 13.3 52.7

Values represent the mean of each variable for each cluster unless otherwise specified.
Only the variables shown in bold were used as input variables for the primary clustering solution (CF4).
*p Value comparing mean in training to validation <0.05 for t test.
†%LAA using −856 Hounsfield unit threshold on expiratory CT scan.
C1, relatively resistant smokers; C2, mild upper zone-predominant emphysema; C3, airway-predominant; C4, severe emphysema.

Figure 3 Proportion of individuals in each Global Initiative for
Chronic Obstructive Lung Disease (GOLD 2007) stage by core feature
set clustering solution (k=4). Cluster 1 (relatively smoking resistant
individuals) consists largely of control smokers and GOLD 1–2
individuals. Cluster 4 (severe emphysema) consists largely of GOLD 2–4
individuals. Clusters 2 and 3 (upper zone emphysema and
airway-predominant) consist largely of control smokers, GOLD 1–2 and
GOLD unclassifiable (GOLD U) individuals.
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Cluster 4: severe emphysema
Cluster 4 represents 20% of the sample and is characterised by
high emphysema, gas trapping and severe airflow obstruction
(p<0.001 for all measures). This group consists primarily of
GOLD 2–4 individuals. It has the lowest BMI, highest lifetime
pack-years exposure, oldest average age (p<0.001 for all mea-
sures) and it is the most severely affected cluster in terms of
COPD-related measures. The effect sizes of the associations
between the severe emphysema cluster and the four
COPD-related clinical variables are roughly twice as large as
those observed for the upper zone emphysema and airway-
predominant clusters.

This cluster is strongly associated with rs1980057 (p=0.001)
near HHIP and rs8034191 (p=5×10−8) in the chromosome
15q locus that includes the nicotinic receptor genes CHRNA3
and CHRNA5 as well as IREB2 (table 3). It has a significantly
higher proportion of NHWs than all other clusters and a higher
proportion of male subjects than the mild upper zone emphy-
sema and airway-predominant clusters (p<0.001).

Validation of the CF4 clustering solution
To validate the CF4 clustering solution, we examined the
characteristics and associations of CF4 clusters in the validation
data sample. The characteristics of the CF4 clusters in the train-
ing and validation samples were similar (table 2), demonstrating
that the clusters can reliably be reproduced in a separate data
sample.

The associations in the training and validation sample
between CF4 clusters, COPD-related clinical measures and
COPD SNPs are shown in table 3. For the clinical variables, all
12 of the associations are highly significant in training and valid-
ation. For the genetic risk factors, the two associations in the
training sample with p values below the Bonferroni-determined
threshold of p=0.0007 were both replicated at p≤ 0.05 in the
validation sample. Furthermore, of the 11 genetic associations
observed with p≤ 0.05 in the training sample, 7 were replicated
at p≤ 0.05 in validation.

Robustness of CF4 clusters after adjustment for GOLD stage
To determine whether the associations observed with these clus-
ters and COPD-related clinical and genetic variables were
driven by severity of airflow obstruction, we repeated the cluster
association tests adjusting for GOLD 2007 stage and GOLD
2011 classes A–D (see online supplemental tables 2 and 3). All
of the associations with clinical measures remained significant
(p≤ 0.001). This suggests that the discovered clusters provide
information independent from COPD severity as defined by
GOLD.

In regard to genetic associations, the cluster associations
showed divergent behaviour in response to adjustment for
GOLD 2007 stage and GOLD A–D classes. The genetic associa-
tions with cluster 4 were attenuated, whereas the strong associ-
ation observed between cluster 2 (upper zone emphysema) and
rs1980057 near HHIP was unaffected, suggesting that this associ-
ation is due to properties of this cluster that are distinct from
disease severity as assessed by the severity of airflow obstruction.

DISCUSSION
Using a large sample of smokers with a wide range of airflow
obstruction and well characterised with respect to COPD fea-
tures, cluster analysis identified solutions demonstrating strong
association with clinically relevant COPD-related measures and
high repeatability in cross-validation. A filtered subset of input
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features yielded a four-cluster result that is informative beyond
the traditional COPD case–control distinction. These clusters can
be described as (1) relatively smoking-resistant individuals, (2)
individuals with mild upper zone-predominant emphysema and
airflow obstruction, (3) individuals with airway-predominant
disease and (4) individuals with severe obstruction and emphy-
sema. In addition to being relevant clinically, some of these clus-
ters are strongly associated with known COPD-associated
variants. These clusters and associations were validated in a
second data sample from the same study population.

This analysis presents novel findings about smoking-related
pulmonary subtypes. We describe a mild upper zone
emphysema-predominant cluster that has not been extensively
described in previous studies and demonstrate that membership
in this cluster is associated with a genetic variant in the HHIP
gene. This cluster was identified in our study population for at
least three reasons: first, our study population included CT
scans from a range of smokers, including those with mild or no
obstruction; second, we included emphysema distribution as an
input feature for clustering; and third, our sample size is sub-
stantially larger than previously reported COPD cluster analysis
studies. Our work also adds to the field by explicitly addressing
the reproducibility of cluster analyses and by using intrinsic (ie,
cluster stability) and extrinsic (ie, clinical and genetic associa-
tions) criteria for assessing multiple potential clustering
solutions.

These results confirm some of the findings from previous sub-
typing efforts in COPD. First, most studies have identified a
severely affected group, though the severity of emphysema and
airway wall thickness in this group has been variable.12 21–23

Second, these findings affirm the concept of emphysema-
predominant and airway-predominant COPD while providing
additional insight regarding the role of emphysema distribution
in COPD heterogeneity.2 5 13 21 22 24 25 The identification of
emphysema-predominant and airway-predominant groups,
however, has not been universal. Garcia-Aymerich et al did not
identify an airway-predominant group, and instead identified a
group with elevated BMI and increased comorbidities but with
less prominent airway wall thickness on CT scan.12 In our study,
the high average BMI and over-representation of women in the
airway-predominant group is of clinical and epidemiological
interest, and the female airway predominance recapitulates
observations by Martinez et al in NETT.26

We examined the association of clusters with known COPD
GWAS SNPs. While the directionality of associations varied
between clusters for some SNPs, the analysed SNPs did show a
consistent direction of effect compared with the previous
COPD susceptibility association literature in the comparison of
the relatively smoking-resistant cluster to the severe obstruction/
emphysema cluster. The weak associations in our airway-
predominant group are consistent with the findings in the
ECLIPSE cohort, where no associations were identified with
Pi10.27 In contrast, consistent associations with the HHIP and
15q loci were found for the severe and mild upper lobe-
predominant emphysema groups. This association in the latter
group is particularly notable since the airway-predominant
group, with similar average lung function to the upper lobe-
predominant group, shows no strong genetic associations. These
results are congruent with ECLIPSE where the associations of
these loci with radiologist-scored emphysema were stronger
than that for FAM13A.27 Together, these findings suggest that
genetic associations in COPD may be subtype dependent.

This work has some limitations. It focuses primarily on con-
tinuous spirometric and quantitative CT measures; however,

other aspects of COPD such as biomarker measurements and
comorbidities were not included either due to their absence
from our data or due to limitations of the k-means clustering
method, which can yield spurious results when applied to a
mixture of continuous and categorical variables. In the future,
approaches that evaluate a range of clustering methods and a
wider set of variables will be of interest. However, as this work
demonstrates, the inclusion of more input features does not
necessarily yield better clustering results. The optimal selection
of features for clustering (ie, feature selection) is a critical area
for the application of unsupervised learning to disease subtyping
that requires further exploration. This analysis is cross-sectional,
and it is possible that these results may be confounded by differ-
ences in disease severity. This is an important limitation for all
clustering efforts using cross-sectional data that could be
addressed through analyses of longitudinal data or through the
development of novel clustering methods. A number of subjects
from the overall study were excluded from the clustering ana-
lysis due to missing data, primarily from CT scan-related vari-
ables, and there is some bias in the clustering subset compared
with the excluded subjects. This limits the generalisability of the
sample on which clustering was performed, though the included
sample is large and consists of a broad spectrum of
smoking-related disease.

In summary, k-means clustering in the COPDGene study
identifies four groups of smokers that are associated with
important COPD-related measures even after adjustment for
GOLD stage. Genetic association analysis with known
COPD-associated variants shows strong, cluster-specific associa-
tions with these known genetic risk factors. This clustering
approach is reproducible in independent data sets, facilitating
the further study and characterisation of these groups of
smokers.
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Supplemental Materials 

Methods 

Data Collection 

 Quantitative measures of emphysema and airway wall thickness were generated 

with SLICER (http://www.slicer.org) and VIDA software (VIDA Diagnostics, Iowa City, IA; 

http://www.vidadiagnostics.com), respectively.(1) Dyspnea and lung disease-specific 

quality of life measures were obtained through the use of previously validated 

questionnaire items.(2;3) 

 

Cross-Validation Estimates of Cluster Stability 

 To assess the stability of various cluster solutions, we used five-fold cross validation 

to derive estimates of cluster stability as quantified by the average normalized mutual 

information (NMI). Normalized mutual information quantifies the dependency between 

variables, and it ranges from 0 (no dependency) to 1 (high dependency). Unlike Pearson 

correlation, NMI captures nonlinear in addition to linear dependency between variables. 

This procedure was carried out entirely in the training portion of the data. Four-fifths of 

the training sample served as the cross-validation training set (CV Train) and the 

remaining one-fifth of the data served as cross-validation test set (CV Test). Using the 

learned centroids from the CV Train set, clusters were predicted in the CV Test set and then 

compared to the cluster results for that fold obtained by running k-means on the entire 

(original) training sample. NMI quantified the degree of agreement, and the average NMI 

results obtained from each of the five rounds of cross-validation were used to prioritize 

cluster solutions by stability. 



 

Genetic Association Testing 

    Genetic associations were performed in non-Hispanic white (NHW) subjects only 

using additive genetic coding and adjusted for principal components of genetic ancestry. A 

Bonferonni-adjusted statistical significance of p=0.0007 for genetic associations in the 

training set was defined based on 70 genetic association tests performed. The threshold for 

validation in the independent sample was p=0.05. 

 

Missing Data 

 We employed a complete cases approach and excluded individuals from analysis 

who were missing data in any of the variables used for clustering, cluster association 

testing or interpretation. There was no difference in age of pack-years between included 

and excluded subjects (Supplemental Table 8). There was statistically significant but 

relatively minor differences in FEV1 and FEV1/FVC, and there were significant differences 

in gender and racial composition. Subjects with missing data were more likely to be female 

and African-American. Of the 10,300 individuals enrolled in COPDGene, 108 non-smokers 

were excluded from analysis, as well as 63 individuals with inadequate spirometry data.  Of 

the remaining 10,129 individuals, 511 did not receive an inspiratory or expiratory scan. An 

additional 953 subjects failed quality control for either the inspiratory or expiratory scan, 

and 64 subjects were excluded for an FRC/TLC ratio >1. Of the remaining 8,601 subjects, 

143 had incomplete data for emphysema distribution. An additional 170 individuals were 

excluded due to missing data for the following variables: airway wall thickness (n=4), gas 



trapping (n=44), resting oxygen saturation (n=2), MMRC dyspnea score (n=11), and BODE 

(n=109).  

 

 

 



Supplemental Table 1. Feature Descriptions for Comprehensive Feature Set  

  Variables Descriptions 

Spirometry-Defined 
Variables 

Post-bronchodilator FEV1 % of predicted 
observed FEV1 (liters)/predicted FEV1 (liters) from Hankinson 
equations 

FVC observed forced vital capacity (liters) 

FEV1/FVC observed FEV1 (liters)/observed FVC (liters) 

BDR as % of FEV1 
% Change in FEV1 volume: (post-bronchodilation FEV1 - pre-
bronchodilation FEV1, liters) /post-bronchodilation FEV1 (liters) 

BDR as % of FVC 
% Change in FVC volume: (post-bronchodilation FVC - pre-
bronchodilation FVC, liters) /post-bronchodilation FVC (liters) 

CT-Defined Variables 

log-transformed emphysema (%LAA -950HU*) log(%LAA -950HU + 1) 

Log ratio of Upper Third to Lower Third Emphysema 
log(%LAA -950 in upper third of lung/%LAA -950 in lower third 
of lung) 

Segmental Wall Area % 
Area of airway wall/area of entire airway for 6 selected 
segmental level airways (RB1, RB4, RB10, LB1, LB4, LB10) 

TLC % of Predicted TLC measured from inspiratory CT (liters)/predicted TLC (liters) 

FRC % of Predicted FRC measured from expiratory CT (liters)/predicted FRC (liters) 

Gas Trapping %LAA -856HU on expiratory scan 

Other Physiologic 
Measures 

BMI weight (kg)/height (m2) 

 Oxygen Saturation peripheral oxygen saturation, %  

* HU = Hounsfield units 

 

 

 



Supplemental Table 2. Cluster Associations in Training Sample for CF4 Solution Adjusting for GOLD 2007 

Stage 

  Training 

  C2:OR C2:pval C3:OR C3:pval C4:OR C4:pval 

Exacerbations 1.62 <0.001 2.03 <0.001 2.98 <0.001 

MMRC 2.24 <0.001 2.27 <0.001 2.46 <0.001 

BODE 2.45 <0.001 2.54 <0.001 4.27 <0.001 

Hospitalizations/ER Visits 3.15 <0.001 3.45 <0.001 3.44 <0.001 

rs7671167 (FAM13A) 0.98 0.81 0.96 0.59 0.89 0.53 

rs1980057 (HHIP) 0.66 7.81E-05 0.92 0.35 0.78 0.16 

rs13180 (Chr15q) 0.89 0.26 1.16 0.08 1.06 0.75 

rs8034191 (Chr15q) 1.19 0.09 0.90 0.22 1.13 0.49 

rs7937 (Chr 19q) 1.31 0.01 1.11 0.21 1.21 0.31 

OR = odds ratio. Effect sizes represent odds ratio from logistic regression or proportional odds logistic 
regression in the case of Exacerbations, MMRC Score, and BODE  index.  
 

Supplemental Table 3. Cluster Associations in Training Sample for CF4 Solution Adjusting for GOLD 2011 

A-D Classes 

  Training 

  C2:OR C2:pval C3:OR C3:pval C4:OR C4:pval 

Exacerbations 1.75 <0.001 1.96 <0.001 2.11 <0.001 

MMRC 2.19 <0.001 2.30 <0.001 4.15 <0.001 

BODE 2.55 <0.001 2.93 <0.001 22.87 <0.001 

Hospitalizations/ER Visits 3.28 <0.001 3.42 <0.001 4.54 <0.001 

rs7671167 (FAM13A) 0.96 0.64 0.93 0.35 0.87 0.24 

rs1980057 (HHIP) 0.64 1.36E-05 0.91 0.24 0.83 0.11 

rs13180 (Chr15q) 0.89 0.24 1.11 0.19 0.95 0.67 

rs8034191 (Chr15q) 1.21 0.06 0.92 0.31 1.28 0.04 

rs7937 (Chr 19q) 1.33 0.004 1.13 0.11 1.29 0.03 

OR = odds ratio. Effect sizes represent odds ratio from logistic regression or proportional odds logistic 
regression in the case of Exacerbations, MMRC Score, and BODE  index.  
 

 

 

 

 



Supplemental Table 4. Cluster Associations in Training Sample Using Cluster 2 (ULP) as Reference 

Response Group OR (CI) P 

Exacerbations 
C1 0.44 (0.38-0.51) <0.001 
C3 1.39 (1.22-1.58) 0.01 
C4 3.93 (3.47-4.46) <0.001 

BODE 

C1 0.3 (0.27-0.33) <0.001 

C3 1.37 (1.25-1.51) <0.001 

C4 19.75 (17.72-22.03) <0.001 

MMRC 

C1 0.36 (0.33-0.39) <0.001 

C3 1.21 (1.1-1.32) 0.04 

C4 3.87 (3.52-4.26) <0.001 

Hospitalizations/ 
ER Visits 

C1 0.25 (0.2-0.3) <0.001 

C3 1.24 (1.06-1.45) 0.17 

C4 2.91 (2.5-3.38) <0.001 

rs7671167 

C1 0.95 (0.87-1.04) 0.59 

C3 0.91 (0.83-1) 0.33 

C4 0.9 (0.82-0.99) 0.29 

rs1980057 

C1 0.64 (0.58-0.7) <0.001 

C3 1.42 (1.28-1.56) <0.001 

C4 1.21 (1.1-1.34) 0.05 

rs13180 

C1 0.82 (0.75-0.9) 0.03 

C3 1.29 (1.17-1.42) 0.01 

C4 1.01 (0.91-1.11) 0.93 

rs8034191 

C1 1.33 (1.21-1.46) 0.002 

C3 0.76 (0.69-0.84) 0.01 

C4 1.1 (1-1.22) 0.31 

rs7937 

C1 1.3 (1.18-1.42) 0.004 

C3 0.9 (0.81-0.99) 0.26 

C4 0.92 (0.83-1.02) 0.41 

Reference cluster -= C2 (Upper Lobe Predominant) 
 

 

 

 

 

 



Supplemental Table 5. Cluster Associations in Training Sample Using Cluster 3 (AP) as Reference 

Response Group OR (CI) P 

Exacerbations 
C1 0.32 (0.28-0.36) <0.001 
C2 0.72 (0.63-0.82) 0.01 
C4 2.82 (2.56-3.12) <0.001 

BODE 

C1 0.22 (0.2-0.23) <0.001 

C2 0.73 (0.66-0.8) <0.001 

C4 14.37 (13.06-15.81) <0.001 

MMRC 

C1 0.29 (0.27-0.32) <0.001 

C2 0.83 (0.76-0.91) <0.001 

C4 3.21 (2.95-3.48) <0.001 

Hospitalizations/ 
ER Visits 

C1 0.2 (0.17-0.24) <0.001 

C2 0.81 (0.69-0.94) <0.001 

C4 2.34 (2.08-2.64) <0.001 

rs7671167 

C1 0.32 (0.28-0.36) 0.05 

C2 0.72 (0.63-0.82) 0.33 

C4 2.82 (2.56-3.12) 0.86 

rs1980057 

C1 0.22 (0.2-0.23) 0.22 

C2 0.73 (0.66-0.8) <0.001 

C4 14.37 (13.06-15.81) 0.05 

rs13180 

C1 0.29 (0.27-0.32) 0.62 

C2 0.83 (0.76-0.91) 0.01 

C4 3.21 (2.95-3.48) 0.004 

rs8034191 

C1 0.2 (0.17-0.24) 0.66 

C2 0.81 (0.69-0.94) 0.01 

C4 2.34 (2.08-2.64) <0.001 

rs7937 

C1 0.32 (0.28-0.36) 0.03 

C2 0.72 (0.63-0.82) 0.26 

C4 2.82 (2.56-3.12) 0.75 

Reference cluster -= C3 (Airway Predominant) 
 

 

 

 

 

 



Supplemental Table 6. Cluster Associations in Training Sample Using Cluster 4 (SE) as Reference 

Response Group OR (CI) P 

Exacerbations 
C1 0.11 (0.1-0.13) <0.001 
C2 0.25 (0.22-0.29) <0.001 
C3 0.35 (0.32-0.39) <0.001 

BODE 

C1 0.02 (0.01-0.02) <0.001 

C2 0.05 (0.05-0.06) <0.001 

C3 0.07 (0.06-0.08) <0.001 

MMRC 

C1 0.09 (0.08-0.1) <0.001 

C2 0.26 (0.23-0.28) <0.001 

C3 0.31 (0.29-0.34) <0.001 

Hospitalizations/ 
ER Visits 

C1 0.08 (0.07-0.1) <0.001 

C2 0.34 (0.3-0.4) <0.001 

C3 0.43 (0.38-0.48) <0.001 

rs7671167 

C1 0.84 (0.78-0.91) 0.95 

C2 0.9 (0.82-0.99) 0.10 

C3 0.99 (0.91-1.07) 0.19 

rs1980057 

C1 0.79 (0.73-0.85) 0.01 

C2 1.21 (1.1-1.34) 0.24 

C3 0.86 (0.8-0.93) <0.001 

rs13180 

C1 0.82 (0.76-0.88) <0.001 

C2 1.01 (0.91-1.11) 0.90 

C3 0.79 (0.73-0.86) 0.01 

rs8034191 

C1 1.5 (1.39-1.61) 0.004 

C2 1.1 (1-1.22) 0.13 

C3 1.42 (1.31-1.54) 0.03 

rs7937 

C1 1.2 (1.12-1.29) 0.38 

C2 0.92 (0.83-1.02) 0.38 

C3 1.03 (0.95-1.11) <0.001 

Reference cluster -= C3 (Airway Predominant) 
 

 

 

 

 

 



Supplemental Table 7. Comparison of Clustering Assignment in GOLD 2-4 Subjects from Clustering 

Performed in All Subjects and Clustering Performed in GOLD 2-4 Only 

  
Classification of GOLD 2-4 Subjects in All Subjects 

Analysis 

Classification of 
GOLD 2-4 

Subjects in Case 
Only Clustering 

  C1 C2  C3 C4 

C1 107 179 0 0 

C2 0 0 379 1 

C3 0 7 8 827 
 

Supplemental Table 8. Characteristics of Subjects Excluded for Missing Data Compared to Analyzed 

Subjects 

Characteristic 
Subjects with Complete 

Data 
Subjects Excluded for 

Missing Data 
P-value 

N 8288 1904 --- 
Gender, % Female 0.46 0.50 0.01 
Race, % African-American 0.32 0.42 <0.001 
Age 58.9 (14.4) 58.4 (14.8) 0.15 
Pack Years 39.5 (27.8) 38.3 (26.9) 0.15 

FEV1, % of predicted 81.0 (34.3) 78.8 (39.6) <0.001 

FEV1/FVC 0.72 (0.20) 0.71 (0.23) 0.006 

63 excluded subjects were missing data for the analyzed characteristics above. 

P-value obtained by Pearson's chi-square test (proportions) or Wilcoxon rank sum test. 

 
 

Supplemental Table 9. Detailed Smoking Information for Training and Validation Data 

Characteristic Training Validation 

N 4187 4101 

Pack-Years, median (IQR) 39.3 (28.0) 39.7 (27.0) 

Smoking Intensity, median (IQR) 20 (10) 20 (10) 

Smoking Duration in years 36.4 (10.1) 36.4 (10.2) 

Age Started Smoking 16.9 (4.5) 16.8 (4.7) 

 

 



 

 

 

 

 

 

Supplemental Figure 1. Average Number of Exacerbations of Past Year, MMRC Score, BODE Index, and 

Number of ER Visits and Hospitalizations by Cluster  
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