suggesting an altered inflammatory phenotype, at least in these models, to these stimuli.

REFERENCES

Abstract P159 Figure 1.

P160 RETROSPECTIVE STUDY ANALYSING WHETHER OPTIMIZATION OF PULMONARY VASCULAR ENHANCEMENT INFLUENCES DIAGNOSTIC OUTCOME IN THE INTERPRETATION OF CT PULMONARY ANGIOGRAMS (CTPA)

C Trainer, N Schenbri, J Taylor; University of Dundee, Medical School, Dundee, United Kingdom; Ninewells Hospital and Medical School, Dundee, United Kingdom

Introduction and Objectives Pulmonary embolism (PE) is a common cardiovascular emergency and is the most common preventable cause of hospital deaths. Various factors can impact on the diagnostic accuracy of CTPA, which is now considered the first line imaging due to presumed persistent or recurring patient symptoms, the majority (87.5%) of these negative scans were still negative and only 12.5% were positive for PE. No major pitfall has been identified in local CTPA acquisition technique that may have led to subsequent misses of potentially life-threatening PEs.

Clinical trials in asthma

P161 A RANDOMISED CONTROLLED TRIAL OF SINGLE COMBINATION Budesonide/formoterol INHALER AS MAINTENANCE AND RELIEVER THERAPY IN ASTHMA PATIENTS AT RISK OF SEVERE EXACERBATIONS

M Patel, J Pitcher, D Shaw, M Weatherall, R Beasley; Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; Medical Research Institute of New Zealand, Wellington, New Zealand; University of Otago, Wellington, New Zealand

Introduction The Single budesonide/formoterol inhaler Maintenance And Reliever Therapy (SMART) regimen reduces severe asthma exacerbations, but it is uncertain whether it increases the risk of adverse effects due to high beta-agonist and corticosteroid doses with both short-term and cumulative exposure.

Objectives Our hypothesis was that treatment with the SMART regimen would reduce the risk of beta-agonist overuse but that when such episodes occurred, patients were less likely to seek medical review and, that any reduction in severe exacerbations would be at the cost of a higher systemic corticosteroid burden.

Methods This was a 24-week, open-label, parallel group trial in 303 asthma patients with a recent exacerbation, conducted at four primary healthcare practices and one secondary care hospital. Participants were randomised to 200/6µg budesonide/formoterol metered dose inhaler according to the SMART regimen (two actuations twice daily maintenance with one extra actuation as-needed) or a fixed-dose regimen (two actuations twice daily maintenance) to one to two actuations of 100µg salbutamol as-needed (‘Standard’), with electronic monitoring of actual inhaler use. The primary outcome was the proportion of participants with at least one high beta-agonist use episode (>12 budesonide/formoterol actuations/day in SMART or >16 salbutamol actuations/day in Standard).

Results There was no significant difference between groups in the proportion of participants with at least one high use episode: SMART 84/151 (56%) vs Standard 68/152 (45%); relative risk (95% CI) 1.24 (0.99–1.56), p = 0.058. There were fewer days of high use [mean (SD) 5.1 days (14.3) vs 8.9 days (20.9), relative rate (RR) (95% CI) 0.58 (0.39–0.88), p = 0.01] and days of high use without medical review [85 days (17.8) vs 18.3 days (24.8) per high use patient, RR 0.49 (0.31–0.75), p = 0.001] in the SMART group. The SMART regimen resulted in higher average daily inhaled corticosteroid exposure, but reduced oral corticosteroid exposure, with no difference in composite systemic corticosteroid exposure [ratio of means (95% CI) 1.03 (0.86–1.22), p = 0.76]. SMART participants had fewer severe asthma exacerbations [35 vs 66, RR 0.54 (0.36–0.82), p = 0.004].

Conclusions The SMART regimen has a favourable risk/benefit profile in patients at risk of severe asthma exacerbations.
Introduction and Objectives Chronic propranolol does not improve airway hyper-responsiveness (AHR) in persistent asthmatics taking medium dose inhaled corticosteroid (ICS), 440 μg/day. We wished to assess for any putative corticosteroid-sparing effect of propranolol added to low dose ICS versus higher dose ICS, on histamine AHR.

Methods We conducted a randomised double-blind placebo-controlled crossover trial in mild-moderate persistent asthmatics. Patients were run-in for 2 weeks on hydrofluoroalkane-beclomethasone dipropionate (HFA-BDP) 100μg/day. Patients were then randomised to either: propranolol 80mg/day plus HFA-BDP 100μg/day; or placebo plus HFA-BDP 400μg/day, each for 4 weeks. Propranolol was up-titrated to 80mg/day for the second 2 weeks of treatment. Patients received tiotropium 18μg/day during run-in and both treatments, which was subsequently discontinued 5 days prior to histamine challenge (primary outcome).

Results 16 patients completed, mean: age 38y; FEV1 86.4%; Histamine PC20 1.39mg/ml; ICS 406mg/day. Histamine PC20 remained unchanged adding propranolol to HFA-BDP100 compared to baseline (HFA-BDP100): 0.17 doubling dilution (dd) difference (95%CI -0.58–0.92), but there was a significant improvement with HFA-BDP400 compared to both baseline 1.05dd (95%CI 0.43–1.66), P = 0.02; and propranolol 0.88dd (95%CI 0.45–1.30), P = 0.006 (Figure 1a). Significant improvements were observed with HFA-BDP400 for exhaled nitric oxide, blood eosinophils (Figure 1b) and Asthma Quality of Life Questionnaire (AQLQ) symptom score (Figure 1c), but not with propranolol. Salbutamol recovery time post-challenge was partially blunted by propranolol (median prolongation 5min compared to both baseline and HFA-BDP400, P = 0.002). Domiciliary evening FEV1 also fell with propranolol (mean reduction from baseline 0.22L [95%CI 0.10–0.34L], P = 0.012) while Asthma Control Questionnaire (ACQ) showed no significant changes with either treatment compared to baseline.

Conclusions In mild-moderate persistent asthmatics, propranolol produced no additive effects on top of low dose ICS, while further significant improvements in AHR and inflammation were seen with a higher dose of ICS. Propranolol attenuated salbutamol recovery and reduced evening FEV1, but not ACQ or AQLQ.

REFERENCES

Poster sessions

P163 Tiotropium decreases the risk of exacerbations in patients with symptomatic asthma regardless of baseline characteristics including markers of allergic status

1DMG Holkin, 2EO Bateman, 3DF Tashkin, 4HF Dahl, 5PF Paggiaro, 6CK Beck, 7MV Vandewalker, 8W Seizb, 9PM Monari-Zentgraf, 10HS Schmidt, 11HJM Karstjens; 1Royal Devon & Exeter Hospital, Exeter, UK; 2University of Cape Town, Cape Town, South Africa; 3David Geffen School of Medicine, University of California, Los Angeles, California, USA; 4Boehringer Ingelheim Pharma GmbH & Co KG, Ingelheim am Rhein, Germany; 5Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark; 6Pulmonary Unit, University Hospital of Pisa, Pisa, Italy; 7Institut für Gesundheitsförderung, Rudendorf, Brandenburg, Germany; 8Asthma Consultants; Jefferson City, Missouri, USA; 9Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany; 10University of Groningen and the Department of Pulmonary Medicine and Tuberculosis, University Medical Center Groningen, and Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands

Rationale The addition of tiotropium provides bronchodilation and reduces exacerbations in patients with severe asthma (Karstjens et al. NEJM 2012). Subgroup analyses were performed to determine whether this positive effect was limited to definable subgroups.

Methods Eligible patients: were aged 18–75 years; had a ≥ 5-year history of asthma; were diagnosed before the age of 40; scored 1.5 on Asthma Control Questionnaire 7; and were life-long non-smokers or ex-smokers (<10 pack-years) who quit smoking ≥ 1 year before study enrolment. Patients had experienced ≥ 1 exacerbation in the previous year. Time to first severe exacerbation from the pooled data after 48 weeks was one of three primary end points. Secondary end points included time to first episode of asthma worsening. Subgroup analyses of time to first severe exacerbation were performed in groups defined by baseline characteristics, including age, allergic status, smoking status and reversibility.

Results 912 patients were randomised: 456 received 5 μg tiotropium via Respimat Soft Mist Inhaler and 456 received placebo once daily for 48 weeks. In the total study group, the time to first severe exacerbation was increased by the addition of tiotropium (risk reduction 21%; hazard ratio 0.79; p = 0.03). The time to first episode of asthma worsening was increased in the tiotropium group compared with placebo (risk reduction 31%; hazard ratio 0.69; p = 0.001). Subgroup analyses showed that neither the time to first severe exacerbation (Figure) nor the time to first episode of asthma worsening was dependent on baseline characteristics (no significant interactions).

REFERENCES

Abstract P162 Figure 1 (A) Histamine provocative concentration causing 20% fall in FEV1. Geometric means with 95% confidence intervals (CI). (B) Blood eosinophil count. Means with 95% CI. (C) Asthma Quality of Life Questionnaire (AQLQ) symptom component score. Means with 95% CI. HFA = hydrofluoroalkane beclomethasone dipropionate. Base = post run-in baseline measurements. HFA100 = 100μg/day. HFA400 = 400μg/day. Prop = Propranolol 80mg/day.

Abstract P163 Figure. Analysis of the time to severe asthma exacerbation by subgroups defined at baseline.
P162 Effect of adding propranolol or increased inhaled corticosteroid dose in persistent asthma

WJ Anderson, PM Short, PA Williamson, A Manoharan and BJ Lipworth

Thorax 2013 68: A148-A149
doi: 10.1136/thoraxjnl-2013-204457.313