The authors also queried the relevance of our findings on larger airways EMT to COPD. A major feature of COPD, in addition to small airway destruction, is its association with lung (airway) cancer. We have found large airway EMT to be associated with increased angiogenesis; this is a process reminiscent of EMT-type 3, a pro-cancer stroma in contrast with the more specifically profibrotic EMT-type-2 which lacks angiogenesis.\(^4\)\(^5\) Active EMT-type-3 in large airways might be the link between COPD and lung cancer development.

For adherens proteins E-cadherin and ZO-1, the authors reported no staining in the smokers/COPD patients’ epithelium, suggesting their expression is lost as the part of EMT. It is true that E-cadherin and ZO-1 epithelial expression does decrease during EMT, but if disappeared completely the epithelium would fall apart. Their protein analysis and immunofluorescence data on primary human bronchial epithelial cells does show E-cadherin and ZO-1 expression, albeit decreased. We have also been looking at small airways in smokers and see a lot of E-cadherin staining but also N-cadherin expression, as another likely expression of EMT (figure 1).

Rbm fragmentation\(^2\) which is a vital part of the EMT process\(^4\) is evident in the small airway tissue sections shown in the Milara et al paper, as is hypercellularity of the Rbm. However, neither important structural hallmark of EMT is commented upon. The arrows pointing out α-SMA staining, which is below the Rbm, seem to be in the wrong place.

In spite of our reservations, this study highlights the potential importance of EMT in COPD, which might change the way we think about this disease process and its nasty clinical consequences.

Epithelial mesenchymal transition (EMT) in small airways of COPD patients

We congratulate Milara et al\(^1\) for getting a paper suggesting that epithelial mesenchymal transition (EMT) is important in the pathogenesis of chronic obstructive pulmonary disease (COPD) into a top respiratory journal. This is quite a breakthrough.

In the discussion, Milara et al were somewhat dismissive of our findings on EMT markers in large airways of COPD patients;\(^1\) commenting that our study was limited by the mesenchymal protein expressions analysed (MMP-9, S100A4, vimentin) being potentially expressed by inflammatory cells. In a follow-up paper\(^1\) we excluded such confounding. Further, our study illustrated that cells in the basal epithelium, and reticular basement membrane (Rbm) in smokers/COPD double-stain for cytokeratin(s) and the ‘EMT marker’ S100A4, confirming a likely epithelial origin of these cells. Notably, Milara et al also stained their tissue with vimentin.

Correspondence to Professor Eugene Haydn Walters, NHMRC Centre for Research Excellence in Chronic Respiratory Disease and School of Medicine, M51, 17 Liverpool Street, Private Bag 23, Hobart, Tasmania 7000, Australia; haydn.walters@utas.edu.au, sssohal@utas.edu.au

Contributors SSS: literature search, figures, performed the histological analyses, data collection, data interpretation and writing. EHW: design of study, clinical assessments, overview of all analyses, data interpretation and writing.

Competing interests None.

Ethics approval The Human Research Ethics Committee (Tasmania) Network.

Provenance and peer review Not commissioned; internally peer reviewed.

Sukhwinder Singh Sohal, Eugene Haydn Walters

NHMRC Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, Australia

To cite Sohal SS, Walters EH. Thorax 2013;68:783–784. Received 4 February 2013 Revised 10 February 2013 Accepted 14 February 2013 Published Online First 14 March 2013

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

Figure 1 Small airways in surgically resected lung sections from smokers undergoing thoracotomy: (A) black arrows indicating E-cadherin expression in the epithelium; (B) black arrows indicating N-cadherin expression in the epithelium.
REFERENCES

5 Soltani A, Muller HK, Sohal SS, et al. Distinctive characteristics of bronchial reticular basement membrane and vessel remodelling in chronic obstructive pulmonary disease (COPD) and in asthma: they are not the same disease. Histopathology 2012;60:964–70.

Epithelial mesenchymal transition (EMT) in small airways of COPD patients

Sukhwinder Singh Sohal and Eugene Haydn Walters

Thorax 2013 68: 783-784 originally published online March 14, 2013
doi: 10.1136/thoraxjnl-2013-203373

Updated information and services can be found at:
http://thorax.bmj.com/content/68/8/783

References
This article cites 5 articles, 0 of which you can access for free at:
http://thorax.bmj.com/content/68/8/783#BIBL

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Open access (251)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/