PULMONARY PUZZLE

A rapidly growing lung mass with air crescent formation

Harpreet K Lota,1 Michael Dusmet,2 Katrine Steele,3 Athol U Wells,1 Andrew G Nicholson,4 David M Hansell,5 Elisabetta A Renzoni1

1Interstitial Lung Disease Unit, Royal Brompton Hospital, London, UK
2Department of Thoracic Surgery, Royal Brompton Hospital, London, UK
3Department of Respiratory Medicine, Western Sussex Hospitals NHS Trust, Worthing, UK
4Department of Histopathology, Royal Brompton Hospital, London, UK
5Department of Radiology, Royal Brompton Hospital, London, UK

Correspondence to Dr Harpreet K Lota, Interstitial Lung Disease Unit, Royal Brompton Hospital, London, SW3 6NP, h.lota@rbht.nhs.uk

Published Online First 13 April 2012

PULMONARY PUZZLE

A 58-year-old man who never smoked and was under follow-up for polymyositis associated with fibrotic interstitial lung disease was found to have an incidental opacity in the right upper lobe on a chest radiograph. He had been treated with daily azathioprine 200 mg and prednisolone 10 mg for 15 years. A CT chest revealed a mass-like lesion of relatively low attenuation suggesting necrosis (figure 1). Bronchoalveolar lavage was negative for microbiology and cytology. CT-guided biopsies were reported as showing necrosis and inflammation only. A month later, he developed cough with malodorous sputum, generalised fatigue, mild fevers, sweats and dyspnoea.

Two months after the first CT, at presentation to our unit, the patient experienced small haemoptyses. Subsequent chest high resolution CT showed a marked increase in size of the lesion and eccentric cavitation (air crescent sign) (figure 2). Bronchoscopic lavage and endobronchial biopsies remained non-diagnostic. Multiple CT-guided cutting needle biopsies of the margin of the cavitating lesion were performed. Biopsied tissue was negative for Mycobacteria, Aspergillus, Nocardia and Actinomyces. Histology showed necrosis and established fibrosis with areas of dense lymphoid infiltrate within the alveolar interstitium, and abundant fibrinous debris within the alveolar spaces (figure 3A). Within the infiltrate, an atypical CD20 lymphoid population was identified (figure 3B), lying in a denser CD3 T cell population. Staining for Epstein Barr virus was positive.

QUESTION

What is the diagnosis?

ANSWER

Air crescent formation within a mass-like lesion is most commonly associated with aspergillosis, usually in immunocompromised patients1. However, this sign is occasionally seen in malignancy, vasculitis and lymphoproliferative disorders. The rapidity of progression was inconsistent with primary lung cancer and favoured an infective, lymphoproliferative or vasculitic process. The historical findings on biopsy led to a diagnosis of lymphomatoid granulomatosis (LG) grade 3.

LG is a rare, angiocentric and angiodestructive lymphoproliferative disease characterised by Epstein Barr virus (EBV)-infected B cells admixed with reactive T cells, fatal in over half of patients.2 First described by Liebow in 1972, the typical patient was a male smoker in his 5th–6th decade, presenting with cough, fever, dyspnoea and haemoptysis,3 often in association with an immunodeficient state. Key histological features are a mixed mononuclear cell infiltrate infiltrating vessels, varying numbers of CD20 B-lymphocytes positive


Figure 1 Initial CT through the upper lobes showing an amorphous relatively low attenuation (near-fluid density) mass in the posterior segment of the right upper lobe. Sections through the lower lobes showed features consistent with non-specific interstitial pneumonia.
for EBV, present within a background of numerous CD3 T lymphocytes.4

LG is graded as 1–3 based on the proportion of large B cells, with morphological overlap in grades 2 and 3 with large B-cell lymphoma.5 Treatment for higher grades is with combination chemotherapy. Our patient received R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) with good clinical response.

Key points illustrated by this case: (1) long-term immunosuppression should raise clinical suspicions for LG; (2) rapidity of disease progression can refine the differential diagnosis; (3) the air crescent sign is not specific to aspergillosis; (4) there can be sampling issues when needle biopsy is used, particularly for partially necrotic lesions.

Contributors All authors contributed equally to this case report.

Competing interests None.

Patient consent Obtained

Provenance and peer review Not commissioned; internally peer reviewed.

REFERENCES
A rapidly growing lung mass with air crescent formation

Harpreet K Lota, Michael Dusmet, Katrine Steele, Athol U Wells, Andrew G Nicholson, David M Hansell and Elisabetta A Renzoni

Thorax 2013 68: 394-395 originally published online April 13, 2012
doi: 10.1136/thoraxjnl-2012-201868

This article cites 5 articles, 0 of which you can access for free at:
http://thorax.bmj.com/content/68/4/394#BIBL

Articles on similar topics can be found in the following collections

- Screening (oncology) (407)
- Interstitial lung disease (559)
- Hemoptysis (80)
- Health effects of tobacco use (211)
- Vascularitis (53)
- Cardiothoracic surgery (676)
- Chemotherapy (183)
- Health education (1223)
- Inflammation (1020)
- Lung cancer (oncology) (670)
- Lung cancer (respiratory medicine) (670)
- Lung neoplasms (608)
- Muscle disease (36)
- Neuromuscular disease (86)
- Pulmonary eosinophilia (14)
- Radiology (diagnostics) (812)
- Smoking (1037)
- Tobacco use (1039)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/