ORIGINAL ARTICLE

Morbidity and mortality in children with obstructive sleep apnoea: a controlled national study

Poul Jennum,1,2 Rikke Ibsen,3 Jakob Kjellberg4

ABSTRACT

Background Little is known about the diagnostic patterns of obstructive sleep apnoea (OSA) in children. A study was undertaken to evaluate morbidity and mortality in childhood OSA.

Methods 2998 patients aged 0–19 years with a diagnosis of OSA were identified from the Danish National Patient Registry. For each patient we randomly selected four citizens matched for age, sex and socioeconomic status, thus providing 11 974 controls.

Results Patients with OSA had greater morbidity at least 3 years before their diagnosis. The most common contacts with the health system arose from infections (OR 1.19, 95% CI 1.01 to 1.40); endocrine, nutritional and metabolic diseases (OR 1.30, 95% CI 0.94 to 1.80); nervous conditions (OR 2.12, 95% CI 1.65 to 2.73); eye conditions (OR 1.43, 95% CI 1.07 to 1.90); ear, nose and throat (ENT) diseases (OR 1.61, 95% CI 1.33 to 1.94); respiratory system diseases (OR 1.78, 95% CI 1.60 to 1.98); gastrointestinal diseases (OR 1.34, 95% CI 1.09 to 1.66); skin conditions (OR 1.32, 95% CI 1.02 to 1.71); congenital malformations (OR 1.56, 95% CI 1.31 to 1.85); abnormal clinical or laboratory findings (OR 1.21, 95% CI 1.06 to 1.39); and other factors influencing health status (OR 1.29, 95% CI 1.16 to 1.43). After diagnosis, OSA was associated with incidences of endocrine, nutritional and metabolic diseases (OR 1.78, 95% CI 1.29 to 2.45), nervous conditions (OR 3.16, 95% CI 2.58 to 3.89), ENT diseases (OR 1.45, 95% CI 1.14 to 1.84), respiratory system diseases (OR 1.94, 95% CI 1.70 to 2.22), skin conditions (OR 1.42, 95% CI 1.06 to 1.89), musculoskeletal diseases (OR 1.29, 95% CI 1.01 to 1.64), congenital malformations (OR 1.83, 95% CI 1.51 to 2.22), abnormal clinical or laboratory findings (OR 1.16, 95% CI 1.06 to 1.27) and other factors influencing health status (OR 1.35, 95% CI 1.20 to 1.51). The 5-year death rate was 70 per 10 000 for patients and 11 per 10 000 for controls. The HR for cases compared with controls was 6.58 (95% CI 3.39 to 12.79; p<0.001).

Conclusions Children with OSA have significant morbidities several years before and after their diagnosis.

INTRODUCTION

Obstructive sleep apnoea (OSA) affects a significant proportion of the population. It increases the risk of cardiovascular and cerebrovascular morbidity and mortality in the adult population. Most studies have focused on adult OSA with respect to the deleterious effects on patients’ social function, employment and quality of life. However, recent studies suggest that OSA is not benign in children either. It is relatively common in children, in whom it is associated with overweight,1 2 craniofacial abnormalities,3 neurological4 and otolaryngeal diseases. OSA is associated with cardiovascular changes, including ECG and blood pressure (BP) changes,5 excessive daytime sleepiness,6 7 cognitive impairment,8 9 behavioural changes,10 school and educational problems11 12 and reduced quality of life.12 Although these issues were identified many years ago, OSA is still underdiagnosed in children.13 Furthermore, there are almost no studies comparing morbidity before and after a diagnosis of OSA and mortality due to OSA in children with control child subjects.

In Denmark it is possible to evaluate the general disease pattern of all patients with specific diagnoses from hospitals and clinics in the primary and secondary care sectors by interrogating a central database, the National Patient Registry (NPR). We used the NPR to evaluate morbidity before and after a diagnosis of OSA. In a previous study we used the NPR to address the socioeconomic consequences of OSA.14 The aim of this study was to identify patients’ health and diseases before and after a diagnosis of OSA.

METHODS

Subjects

In Denmark all hospital inpatient and outpatient contacts are obliged to be recorded in the NPR. The information supplied to the NPR includes administrative information (eg, time of contact) and information about all primary and secondary
Sleep disordered breathing
diagnoses and diagnostic procedures (eg, polysomnography) and
treatment procedures (eg, surgery or continuous positive airway
pressure, CPAP) using several international classification systems
including the International Classification of Disorders (ICD-10).
The thorough and accurate nature of the NPR means that the
data extracted are representative of all patients in Denmark who
have received a diagnosis of OSA, irrespective of any other diag-
noses. The diagnosis of OSA was made on the basis of clinical
practice irrespective of the methods used for diagnosis (poly-
somnography (PSG), polygraphy or oximetry). As data are avail-
able for the entire observation period, we can trace patients
retrospectively and prospectively relative to the time of their
diagnosis. Furthermore, all contacts in the primary sector
(general practice and specialist care such as paediatricians or ear,
nose and throat (ENT) specialists in the primary sector) and the
use of any medication are recorded in the National Health
Security and Danish Medicine Agency databases, respectively.

There are limitations to the NPR: (1) a small fraction of patients
who receive their diagnosis in the primary sector are not identi-
fied; (2) the control group may include unidentified OSA
patients; (3) specific clinical information such as body mass
index (BMI), apnoea-hypopnoea index and BP are not recorded
sufficiently thoroughly in the NPR and therefore cannot be
included in the analysis.

Using the NPR, we identified all patients who were diagnosed
with OSA between 1997 and 2009. For the OSA diagnoses we
used the International Classification of Diseases (ICD-9) in
Denmark; these codes are given after patient evaluation in each
hospital (based on PSG/polygraphy). Using data from
Denmark’s Civil Registration System Statistics, we then ran-
donely selected citizens of the same age and gender who did not
have a diagnosis of sleep-disordered breathing including
snooring, OSA or hypoventilation. We attempted to match
patients for socioeconomic status (SES) by selecting control sub-
jects from the same locality (typically 30–100 000 inhabitants)
where each patient lived. The ratio of control subjects to
patients was 4:1 in order to reduce variation among controls.
Data from patients and matched control subjects who could not
be identified in the Coherent Social Statistics database were
excluded from the sample. All observations in the two groups
were successfully matched.

The patients and matched control subjects were followed
from the year of diagnosis until 2009. We also controlled for
parental education and income level. Adjusting for parental
social factors may be relevant for children but causes problems
when comparing with OSA in adults. In choosing a control
group it is difficult to decide the extent to which morbidities
should be excluded and whether to control for SES status.
Certain diseases are associated with low SES (eg, obesity) or
cause social deviation (eg, narcolepsy). We chose to use the
International Classiﬁcation of Disorders (ICD-10).

Data from patients and matched control subjects who could not
have a diagnosis of OSA, irrespective of any other diag-
noses that in each category that was
associated with a diagnosis of OSA. We only report all-cause
mortality rates because these often refer to the obvious cause of
death (eg, pneumonia), which tends to underestimate the under-
lying mechanism, and because the relatively small number of
child deaths means that any subgroups would be too small to
detect statistically signiﬁcant differences of the magnitude we
might reasonably expect. We used a limit of comorbid disease
occurrence of more than 1% to select diseases, and then calcu-
lated the OR for each of them.

Statistical analysis
Data were analysed by conditional logit modelling using SAS
V9.1.3 (SAS, Cary, North Carolina, USA). The dependent vari-
able was the binary variable for case-control groups and the
independent variables were those of the 21 diagnosis groups,
omitting the group with no diagnosis 3 years before the diagno-
sis. The second analysis included dummy variables for ICD-10
diagnoses in which the incidence was >1% in the case or
control group. ICD-10 diagnostic groups with an incidence of
<1% were combined in the main diagnosis groups. Only esti-
mates for the ICD-10 diagnoses are reported from the second
analysis, although the dummies for the main groups (including
the remaining diagnosis) were included in the regression.

A patient could appear in more than one diagnosis group or
have several ICD-10 diagnoses during the 3 years before or after
diagnosis.

Not all patients had a full 3 year observation period before
their diagnosis, so for the second and third years at the begin-
nning of the period considered, patients’ data were only available
for 1 or 2 years, respectively. However, since this was also the
case for the control group, we have included these shorter
periods in the analysis.

The results are presented as ORs with 95% CIs and associated
p values. Extreme values were manually validated and no errors
were identiﬁed. Cumulative incidence functions were estimated
and are shown in ﬁgure 2. HRs were estimated using the Cox
proportional hazard model. Two rates were estimated, the ﬁrst
in which no additional explanatory variables were included and,
in the second, the explanatory variables were controlled for
gender to determine whether there was any difference in mor-
tality between males and females. The HR reﬂects the hazard of
a patient dying compared with a control person dying.

RESULTS
We identiﬁed 2998 patients with OSA and 11 974 control sub-
jects. As expected, most of the patients with an initial diagnosis
of OSA were middle-aged; one-quarter were women and
approximately one-tenth were children or adolescents. The age
distribution of the patients aged 0–19 years is shown in ﬁgure 1.

Morbidity before and after a diagnosis of OSA
Morbidity by percentage incidence and OR (with 95% CI) are
shown for the main diagnostic groups before a diagnosis of
OSA and for diagnoses that occurred in >1% of patients with
OSA (table 1). OSA was positively associated with infections;
edocrine, nutritional and metabolic diseases; nervous, eye and
ENT disorders/respiratory system diseases (middle ear infec-
tions: OR 1.75, 95% CI 1.21 to 2.52, p<0.001; tonsillitis: OR
1.74, 95% CI 1.24 to 1.46, p<0.01; hypertrophic tonsils: OR
2.55, 95% CI 1.74 to 3.72, p<0.001; asthmatic bronchitis:
OR 1.34, 95% CI 1.07 to 1.67, p<0.01); gastrointestinal dis-
eseases; skin conditions; congenital malformations, symptoms,
signs and abnormal clinical or laboratory ﬁndings; and other
factors that inﬂuence health status (suspected ENT disease: OR

950

Downloaded from http://thorax.bmj.com/ on June 22, 2017 - Published by group.bmj.com
1.80, 95% CI 1.35 to 2.20, p<0.001; neurological disease: OR 1.17, 95% CI 1.01 to 1.42, p<0.01). Furthermore, although the overall frequency of injuries was not increased, there was a significant increase in the occurrence of head traumas (OR 1.49, 95% CI 1.09 to 2.04, p<0.01) among children with OSA.

After a diagnosis of OSA (table 2) there were significantly higher incidences of the following conditions: endocrine, nutritional and metabolic diseases; nervous, eye and ENT disorders/ respiratory system diseases (middle ear infections: OR 1.78, 95% CI 1.15 to 2.75, p<0.001; laryngitis: OR 1.81, 95% CI 1.25 to 2.63, p<0.001; adenoid vegetations: OR 2.34, 95% CI 1.57 to 3.51, p<0.001; hypertrophic tonsils: OR 2.46, 95% CI 1.61 to 3.74, p<0.001; chronic respiratory insufficiency: OR 3.14, 95% CI 1.72 to 5.74, p<0.001); skin and musculoskeletal conditions, congenital malformations, symptoms, signs and abnormal clinical or laboratory findings; and other factors that influence health status (suspected ENT disease: OR 1.71, 95% CI 1.17 to 2.50, p<0.001; neurological disease: OR 1.30, 95% CI 1.05 to 1.62, p<0.01).

Mortality

The 12-year death rates are shown in figure 2 and the number of individuals at risk are shown in table 3. The 5-year death rate was 70 per 10 000 for patients and 11 per 10 000 for controls. The HR for cases compared with controls was 6.58 (95% CI 3.39 to 12.79, p<0.001). Controlling for gender did not change the HR and the regression coefficient for gender was not statistically significant.

DISCUSSION

Our study shows that children diagnosed with OSA experienced a wide range of morbidities before their diagnosis. These included risk associations with upper airway abnormalities, upper airway infections, neurological, respiratory, gastrointestinal diseases and congenital malformations. After diagnosis the patients showed a greater incidence of a wide range of diseases including endocrine, nutritional and metabolic diseases; nervous, eye and ENT disorders; respiratory system diseases (upper airway problems and infections, asthma); and musculoskeletal problems. Mortality was higher in children with OSA than in controls. Our study did not consider whether this was related to the consequences of OSA or of comorbid diseases.

In adults, healthcare use and morbidity may be affected more than 8 years before a diagnosis of OSA. This period is inevitably shorter for younger children and is likely to be shorter for older children. Our study shows that premorbid conditions affect children at least 3 years before diagnosis. Although OSA is common in children, it is often underdiagnosed and therefore untreated. OSA is often first diagnosed when a child’s function is affected, but specific data regarding the extent, severity and consequences are sparse. OSA in patients of normal weight with adenotonsils/hypertrophic tonsils is common and they often recover after appropriate surgery, with improvements in symptoms, better daytime and cognitive function, certain biomarkers, lower incidence of cardiac abnormalities and reduced healthcare use. This is much less often the case for overweight children, however. Relatively little is known about the effect of treatment with continuous positive airway pressure (CPAP) in children, the information we have being based on case series. The evaluation of the effect of CPAP in children is limited by its use in patients with special needs such as cerebral palsy or other neurological, muscular and genetic disorders.
Table 1 Morbidities 3 years before a diagnosis of sleep apnoea by major disease groups

<table>
<thead>
<tr>
<th>Disease group</th>
<th>Cases N (%)</th>
<th>Control N (%)</th>
<th>OR* 95% CI</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious and parasitic diseases</td>
<td>224 (8.1)</td>
<td>1274 (4.0)</td>
<td>1.19 1.01 1.40</td>
<td>0.0339</td>
</tr>
<tr>
<td>Neoplasms</td>
<td>25 (0.9)</td>
<td>35 (0.3)</td>
<td>1.66 1.05 2.63</td>
<td>0.0299</td>
</tr>
<tr>
<td>Blood and immunological diseases</td>
<td>19 (0.7)</td>
<td>28 (0.3)</td>
<td>1.20 0.71 2.03</td>
<td>0.4899</td>
</tr>
<tr>
<td>Endocrine, nutritional and metabolic diseases</td>
<td>54 (1.9)</td>
<td>83 (0.7)</td>
<td>1.30 0.94 1.80</td>
<td>0.1134</td>
</tr>
<tr>
<td>Mental and psychiatric disorders</td>
<td>21 (0.8)</td>
<td>47 (0.4)</td>
<td>0.91 0.54 1.53</td>
<td>0.7157</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>112 (4.0)</td>
<td>72 (0.6)</td>
<td>2.12 1.65 2.73</td>
<td><0.0001</td>
</tr>
<tr>
<td>Diseases of the eye and adnexa</td>
<td>69 (2.5)</td>
<td>88 (0.8)</td>
<td>1.43 1.07 1.90</td>
<td>0.0148</td>
</tr>
<tr>
<td>Ear, nose and throat diseases</td>
<td>159 (5.7)</td>
<td>220 (2.0)</td>
<td>1.61 1.23 1.94</td>
<td><0.0001</td>
</tr>
<tr>
<td>Circulatory/cardiovascular diseases</td>
<td>17 (0.6)</td>
<td>16 (0.1)</td>
<td>1.41 0.81 2.45</td>
<td>0.2229</td>
</tr>
<tr>
<td>Respiratory diseases</td>
<td>581 (21.0)</td>
<td>1068 (9.6)</td>
<td>1.78 1.60 1.98</td>
<td><0.0001</td>
</tr>
<tr>
<td>Gastrointestinal diseases</td>
<td>117 (4.2)</td>
<td>249 (2.2)</td>
<td>1.34 1.09 1.66</td>
<td>0.0064</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue diseases</td>
<td>77 (2.8)</td>
<td>153 (1.4)</td>
<td>1.32 1.02 1.71</td>
<td>0.0374</td>
</tr>
<tr>
<td>Musculoskeletal system and connective tissue diseases</td>
<td>94 (3.4)</td>
<td>230 (2.1)</td>
<td>1.23 0.98 1.56</td>
<td>0.0789</td>
</tr>
<tr>
<td>Genitourinary diseases</td>
<td>58 (2.1)</td>
<td>130 (1.2)</td>
<td>1.15 0.85 1.54</td>
<td>0.3633</td>
</tr>
<tr>
<td>Pregnancy, childbirth and puerperium</td>
<td>1 (0.0)</td>
<td>3 (0.0)</td>
<td>– – – –</td>
<td>0.8266</td>
</tr>
<tr>
<td>Certain conditions originating in the perinatal period</td>
<td>55 (2.0)</td>
<td>97 (0.9)</td>
<td>1.27 0.94 1.71</td>
<td>0.1242</td>
</tr>
<tr>
<td>Congenital malformations, deformations and chromosomal abnormalities</td>
<td>201 (7.3)</td>
<td>315 (2.8)</td>
<td>1.56 1.31 1.85</td>
<td><0.0001</td>
</tr>
<tr>
<td>Abnormal clinical and laboratory findings</td>
<td>318 (11.5)</td>
<td>685 (6.2)</td>
<td>1.21 1.06 1.39</td>
<td>0.0061</td>
</tr>
<tr>
<td>Injury, poisoning and certain other external causes</td>
<td>881 (31.8)</td>
<td>2102 (27.9)</td>
<td>1.09 0.99 1.19</td>
<td>0.0686</td>
</tr>
<tr>
<td>External causes of morbidity and mortality</td>
<td>0 (0.0)</td>
<td>1 (0.0)</td>
<td>– – – –</td>
<td>–</td>
</tr>
<tr>
<td>Other factors influencing health status and contact with health services</td>
<td>698 (25.2)</td>
<td>2771 (15.1)</td>
<td>1.29 1.16 1.43</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

*Conditional logit, baseline: no morbidity.

Table 2 Morbidities 3 years after a diagnosis of sleep apnoea by major disease groups

<table>
<thead>
<tr>
<th>Disease group</th>
<th>Cases N (%)</th>
<th>Control N (%)</th>
<th>OR* 95% CI</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious and parasitic diseases</td>
<td>78 (3.0)</td>
<td>158 (1.5)</td>
<td>1.00 0.76 1.31</td>
<td>0.9764</td>
</tr>
<tr>
<td>Neoplasms</td>
<td>24 (0.9)</td>
<td>48 (0.5)</td>
<td>0.98 0.60 1.60</td>
<td>0.9356</td>
</tr>
<tr>
<td>Blood and immunological diseases</td>
<td>9 (0.3)</td>
<td>29 (0.3)</td>
<td>0.85 0.41 1.78</td>
<td>0.6704</td>
</tr>
<tr>
<td>Endocrine, nutritional and metabolic diseases</td>
<td>63 (2.4)</td>
<td>65 (0.6)</td>
<td>1.78 1.29 2.45</td>
<td>0.0004</td>
</tr>
<tr>
<td>Mental and psychiatric disorders</td>
<td>49 (1.9)</td>
<td>104 (1.0)</td>
<td>1.22 0.88 1.70</td>
<td>0.2268</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>185 (7.2)</td>
<td>81 (0.8)</td>
<td>3.16 2.58 3.89</td>
<td>0.0000</td>
</tr>
<tr>
<td>Diseases of the eye and adnexa</td>
<td>65 (2.5)</td>
<td>81 (1.1)</td>
<td>1.09 0.81 1.46</td>
<td>0.5669</td>
</tr>
<tr>
<td>Ear, nose and throat diseases</td>
<td>101 (3.9)</td>
<td>143 (1.4)</td>
<td>1.45 1.14 1.84</td>
<td>0.0022</td>
</tr>
<tr>
<td>Circulatory/cardiovascular diseases</td>
<td>17 (0.7)</td>
<td>23 (0.2)</td>
<td>1.09 0.58 2.05</td>
<td>0.7818</td>
</tr>
<tr>
<td>Respiratory diseases</td>
<td>363 (14.1)</td>
<td>510 (5.0)</td>
<td>1.94 1.70 2.22</td>
<td><0.0001</td>
</tr>
<tr>
<td>Gastrointestinal diseases</td>
<td>113 (4.4)</td>
<td>243 (2.4)</td>
<td>1.14 0.91 1.43</td>
<td>0.2563</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue diseases</td>
<td>63 (2.4)</td>
<td>114 (1.1)</td>
<td>1.42 1.06 1.89</td>
<td>0.0193</td>
</tr>
<tr>
<td>Musculoskeletal system and connective tissue diseases</td>
<td>93 (3.6)</td>
<td>217 (2.1)</td>
<td>1.29 1.01 1.64</td>
<td>0.0390</td>
</tr>
<tr>
<td>Genitourinary diseases</td>
<td>53 (2.1)</td>
<td>195 (1.9)</td>
<td>0.92 0.68 1.25</td>
<td>0.6005</td>
</tr>
<tr>
<td>Pregnancy, childbirth and puerperium</td>
<td>8 (0.3)</td>
<td>31 (0.3)</td>
<td>0.73 0.30 1.75</td>
<td>0.4751</td>
</tr>
<tr>
<td>Certain conditions originating in the perinatal period</td>
<td>23 (0.9)</td>
<td>15 (0.1)</td>
<td>2.24 1.30 3.84</td>
<td>0.0036</td>
</tr>
<tr>
<td>Congenital malformations, deformations and chromosomal abnormalities</td>
<td>172 (6.7)</td>
<td>209 (2.0)</td>
<td>1.83 1.51 2.22</td>
<td><0.0001</td>
</tr>
<tr>
<td>Abnormal clinical and laboratory findings</td>
<td>252 (9.8)</td>
<td>452 (4.4)</td>
<td>1.37 1.17 1.60</td>
<td>0.0001</td>
</tr>
<tr>
<td>Injury, poisoning and certain other external causes</td>
<td>874 (34.0)</td>
<td>2971 (28.9)</td>
<td>1.16 1.06 1.27</td>
<td>0.0018</td>
</tr>
<tr>
<td>External causes of morbidity and mortality</td>
<td>0 (0.0)</td>
<td>3 (0.0)</td>
<td>– – – –</td>
<td>–</td>
</tr>
<tr>
<td>Other factors influencing health status and contact with health services</td>
<td>562 (21.9)</td>
<td>1274 (12.4)</td>
<td>1.35 1.20 1.51</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

*Conditional logit, baseline: no morbidity.
The current study of children and adolescents up to 19 years of age was done to evaluate potential known and unidentified comorbidities in OSA, and showed that many known risks are associated with a later diagnosis of OSA (eg, upper airway abnormalities, asthma and neurological problems). However, other formerly unrecognised diseases seem to be more closely associated with a later diagnosis of OSA in children (eg, selected infections, gastrointestinal, skin and musculoskeletal diseases, and clinical evaluation for a number of health-related problems). This implies that OSA not only exists in children evaluated for adenotonsillectomy. It is likely that certain health-related problems coexist or are associated with one another (eg, obesity, congenital malformations, neurological disease and diabetes), but our study shows that children and teenagers with OSA have more contact with the healthcare system for a wide range of health-related issues before and after their OSA diagnosis, which supports the findings of former studies. This could in part be due to obesity in these patients, probably due to under-registration of overweight in children. It has been claimed that attention deficit hyperactivity disorder is associated with OSA in case series, although carefully controlled trials have failed to find evidence of this. This is underlined by our finding that there was no greater incidence of psychiatric disease either before or after an OSA diagnosis.

There are a number of limitations to this study. First, it is based on clinical and hospital reports supplied to the NPR. The diagnostic accuracy depends on the institution’s presentation and reporting of the diagnosis and the comorbidities. Confounder variables (eg, BMI) were not recorded, and symptoms and the results of clinical evaluations (eg, PSG and cardiac evaluations) were not considered. PSG is not performed in all subjects as there is tendency to overdiagnose OSA in the childhood population. For these reasons, we cannot relate the findings to OSA. Second, we excluded sleep disordered breathing among controls by diagnosis but not by nocturnal measures; OSA/heavy snoring would be expected in 0.7–4.3% of children. Analysing subgrouped diseases incurs a risk of type 1 error. However, the strength of the study is that it considers data from a national database that includes all identified patients that is time-locked (all reports must be associated with the patient contacts) and covers a substantial follow-up period. Obesity and probably OSA often tend to occur disproportionately in lower socioeconomic groups. We adjusted for SES in our selection of the controls. Furthermore, we randomly chose controls without a diagnosis of sleep disordered breathing (snoring, sleep apnoea, hypoventilation), although they may suffer from other diseases. As a consequence of these factors, our method is conservative and the real differences between the groups are likely to be larger than reported here.

To ameliorate the consequences of OSA, a number of issues should be considered: increased diagnostic capacity; improved treatment and management facilities; the identification of high-risk groups for screening procedures; and general interventions for high-risk groups (eg, obesity) in children. Furthermore, despite the limited effect of adenotonsillectomy, there is only limited postoperative screening of high-risk groups. There is a need to reinforce our knowledge of the long-term effects of OSA in children and to evaluate the effects of interventions, including those on secondary health problems. Consequently, a better diagnostic capacity and treatment facilities for the paediatric population are required. The prediagnostic probability may be improved using information gleaned from questionnaires, although this also carries a risk of overlooking high-risk individuals. The current study suggests that OSA is more likely to occur with certain disorders (eg, upper airway infections and structural abnormalities, and respiratory/neurological diseases) in which OSA should be considered. OSA in obese children should also be taken into account. A number of children with a diagnosis of OSA have undergone adenotonsillectomy. In the future, evaluation of the population should include a subgroup analysis of treatment interventions.

In summary, our study shows that children and teenagers have a wide range of morbidities at least 3 years before and after a diagnosis of OSA, and that mortality is higher in paediatric OSA than in controls.

Table 3

<table>
<thead>
<tr>
<th>Year</th>
<th>Sleep apnoea</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2998</td>
<td>11 974</td>
</tr>
<tr>
<td>2</td>
<td>2988</td>
<td>11 968</td>
</tr>
<tr>
<td>4</td>
<td>2977</td>
<td>11 961</td>
</tr>
<tr>
<td>6</td>
<td>2972</td>
<td>11 962</td>
</tr>
<tr>
<td>8</td>
<td>2971</td>
<td>11 962</td>
</tr>
<tr>
<td>10</td>
<td>2971</td>
<td>11 962</td>
</tr>
<tr>
<td>12</td>
<td>2962</td>
<td>11 942</td>
</tr>
</tbody>
</table>

REFERENCES

Morbidity and mortality in children with obstructive sleep apnoea: a controlled national study
Poul Jennum, Rikke Ibsen and Jakob Kjellberg

Thorax 2013 68: 949-954 originally published online June 8, 2013
doi: 10.1136/thoraxjnl-2012-202561

Updated information and services can be found at:
http://thorax.bmj.com/content/68/10/949

These include:

References
This article cites 27 articles, 7 of which you can access for free at:
http://thorax.bmj.com/content/68/10/949#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Editor's choice (127)
- Epidemiologic studies (1829)
- Child health (843)
- Airway biology (1100)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/