time, we have an up-to-date picture of how CAP is currently managed in the UK, where this differs from guideline recommendations and where attention should be paid to lead to improvements in practice. We believe that the BTS guidelines are a reasonable translation of the available scientific evidence with regard to this topic, but we also acknowledge that they are not perfect and may not be appropriate for all settings. Inevitably, they are weakest where there is least evidence and choice of antibiotics is one such area. We would like to see the guidelines improve, but this can only occur with better evidence. This requires future funding for clinical research in this important, but research-neglected area.

Wei Shen Lim,1 Mark Woodhead2
1Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK; 2Department of Respiratory Medicine, Manchester Royal Infirmary, Manchester, UK

Correspondence to Dr Wei Shen Lim, Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK; weishen.lim@nuh.nhs.uk

Competing interests None.

Contributors WSL and MW wrote the response.

Provenance and peer review Not commissioned; internally peer reviewed.

Accepted 25 August 2011 Published Online First 20 September 2011


REFERENCES

Acronyms, pneumothoraces and the impact of international health on the NHS

I read the latest Issue of Thorax with amusement and frustration. I could not resist your challenge in your Editorial, ‘Pre-drainage tension’, triggered by letters from Drs Simpson and Leigh Smith to make a ridiculous acronym.3

My understanding of pneumothorax was that it is due to a loss of the negative intrapleural pressure that overcomes the elastic recoil of the pulmonary tissues. Once this vacuum is lost then air is free to enter the lungs or intrapleural space with impunity. The actual amounts will vary according to many factors, including the strength of elastic recoil of pulmonary tissues, exact sites of leak and depth of inspiration. Perhaps we need an engineer to explain this?

However, on first reading of the letters I was concerned that all texts on the issue including life support and trauma courses would have to be REPRINTED (Rapidly Expanding Pneumothorax Requiring Immediate Needle Thoracic Elimination to avoid Death), or worse still would Stop Casualties Receiving Appropriate Pneumothorax Procedures to Eliminate Death (SCRAPPED). Having tried to be ridiculous I was then struck by the juxtaposition of Kevin Southern’s article on cystic fibrosis screening4 and Dr Zain Udwadia’s article ‘MDR, XDR, TDR tuberculosis’.5 Both were excellent articles but their proximity raised issues of global health economics that must be addressed. Cystic fibrosis is a disease that has a very large budget, possibly larger with the advent of promising new treatments, but that affects relatively few. The tuberculosis figures from India are frightening. In the age of international travel it might be totally drug-resistant (TDR) tuberculosis that provides the West with a huge public health and mortality problem. When debating NHS reforms the impact of other healthcare systems on ours has not even been considered. Is it time to admit a national health service is not possible in the twenty-first century, but an international health service is not only possible but necessary? Is there a role for the British Thoracic Society to start public debates on these issues?

Thanks for a thought-provoking read.

John Charles Furness
Correspondence to Dr John Charles Furness, Departments of Paediatrics, County Durham and Darlington NHS Foundation Trust, Darlington Memorial Hospital, Hollyhurst Road, Darlington, Durham, DL3 6HX, UK; furgus@doctors.org.uk

Competing interests None.

Provenance and peer review Not commissioned; internally peer reviewed.

Accepted 5 April 2012 Published Online First 27 April 2012

Thorax 2012;67:833. doi:10.1136/thoraxjnl-2012-201987

REFERENCES

Hyperoxia in acute asthma

We read with interest the recent article ‘Randomised controlled trial of high concentration versus titrated oxygen therapy in severe exacerbations of asthma’ by Perrin et al and the accompanying editorial. We note that data presented in the online supplement suggest, unsurprisingly, response to treatment at 60 min in terms of respiratory rate and forced expiratory volume in one second, probably explaining the rise in transcutaneous partial pressure of carbon dioxide (PtCO2) in this population. Therefore, it cannot be assumed that the PtCO2 levels would have continued to rise after 60 min as the authors suggest.

We are unconvinced by the implication that the levels of normocarb and hypercarbia (up to 50 mm Hg) demonstrated in this study are deleterious in acute asthma. Life-threatening respiratory failure in asthma is multifactorial, with ventilation-perfusion mismatch, lung hyperinflation and an increased work of breathing leading to respiratory muscle fatigue all being contributory factors. A degree of ‘permissive hypercapnea’ is now regarded as best practice and a safe approach in the management of mechanical ventilation for respiratory failure in critical care, including the management of severe asthma. Conversely, hyperoxia is known to cause excess reactive oxygen species causing oxidative stress and free radical damage in exposed tissues, but has been implicated in worsening myocardial and cerebral ischaemia. Maintaining hyperoxia may also result in delays in recognising clinical deterioration.

We are in full agreement with current guidelines that therapy should target physiological levels of oxygen, but would argue that hyperoxia per se may be more harmful than the predominant normocarbia found in this study population of acute exacerbations of asthma.

Catherine Snelson, Bill Tunnicliffe
Critical Care Unit, Queen Elizabeth Hospital Birmingham, Birmingham, UK
Correspondence to Dr Catherine Snelson, Critical Care Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2WB, UK; catherine.snelson@uhb.nhs.uk

Competing interests None.

Provenance and peer review Not commissioned; internally peer reviewed.

Accepted 2 December 2011 Published Online First 20 December 2011


REFERENCES
Authors’ response: hyperoxia in acute asthma

We appreciate the comments by Snelson and Tunnicliffe1 regarding our study of the effects of high concentration oxygen therapy in acute exacerbations of asthma.2 We concur with the view that the effect of high concentration oxygen therapy on arterial carbon dioxide pressure (PaCO2) is not clinically relevant in all patients presenting to the emergency department (ED) with acute severe asthma. However, we consider that the 5.9-fold greater risk of patients developing an increase in transcutaneous partial pressure of carbon dioxide (PtCO2) ≥8 mm Hg (22% vs 6% in the high concentration vs titrated oxygen groups, respectively) is likely to be of clinical relevance in life-threatening asthma. Even in our study, which excluded patients who were unable to speak or perform spirometry due to breathlessness, all 10 patients who had a final PtCO2 ≥45 mm Hg had received high concentration oxygen therapy. These findings suggest that the routine administration of high concentration oxygen therapy in the ED setting is a determinant of respiratory failure, a recognised marker of near fatal asthma. This probably also applies to the routine use of high concentration oxygen therapy during ambulance transfer in patients with severe asthma, as has been noted in chronic obstructive pulmonary disease,3 but this was not assessed in our study.

While permissive hypercapnia is an approach to the management of mechanical ventilation for severe asthma, this relates to intubated patients, in whom the purpose is to reduce the risk of complications associated with hyperinflation.4 It certainly does not apply to prehospital or ED care.

We agree that there are many potential risks associated with hyperoxia, including but not limited to reductions in coronary and cerebral blood flow, decreased cardiac output, increased oxidative stress, delay in recognising a clinical deterioration and rebound hypoxaemia if oxygen therapy is abruptly stopped. However, in respiratory disorders such as severe asthma where there is significant ventilation/perfusion (V/Q) mismatch, hypercapnia represents another potential risk of high concentration oxygen therapy that needs to be recognised in clinical practice.
Hyperoxia in acute asthma

Catherine Snelson and Bill Tunnicliffe

Thorax 2012 67: 833-834 originally published online December 20, 2011
doi: 10.1136/thoraxjnl-2011-201383

Updated information and services can be found at:
http://thorax.bmj.com/content/67/9/833.2

These include:

References
This article cites 5 articles, 2 of which you can access for free at:
http://thorax.bmj.com/content/67/9/833.2#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/