Pneumococcal capsular serotypes and lung infection

Jeremy Stuart Brown

Streptococcus pneumoniae is second only to *Mycobacterium tuberculosis* as a bacterial cause of worldwide mortality. Unlike *M tuberculosis*, *S pneumoniae* remains a major cause of death in the developed world, with a standardised mortality rate of 25 per 100 000 in the UK. *S pneumoniae* is the commonest pathogen causing community-acquired pneumonia (CAP), and the majority of serious *S pneumoniae* infections are cases of CAP in infants and older people. *S pneumoniae* is also an important cause of septicaemia, meningitis and infective exacerbations of chronic obstructive pulmonary disease and bronchiectasis. *S pneumoniae* is surrounded by an extracellular layer of polysaccharide called the capsule which promotes immune evasion and is an essential virulence factor. The structure of the capsule differs between *S pneumoniae* strains, with 93 variants identifiable by serotyping. Serotype prevalence is unequal, with the majority of disease caused by around 20 common serotypes. Which serotypes are predominant varies with age, geography and site of infection (eg, the nasopharynx, pleural space or the blood). In the paper by Bewick et al, technical advances in microbiology have been used to identify which *S pneumoniae* capsular serotypes are the commonest causes of CAP in a UK centre. Why do these rather technical data matter to a clinician, and how could they affect future developments in the management of *S pneumoniae* lung infection?

First, the ability to identify which serotypes are causing CAP is in itself a major advance. Previously, capsular serotyping required cultured bacteria and was therefore biased towards serotypes that cause septicaemia as respiratory cultures have such low sensitivity in CAP. For example, in Bewick et al’s paper only 58 of 566 cases of *S pneumoniae* CAP had positive cultures, mainly from blood. By using urine samples for a highly sensitive multiplex immunoassay based on xMAP bead technology, Bewick et al were able to identify *S pneumoniae* capsular serotype in culture negative cases of CAP, providing for the first time a largely unbiased assessment of which serotypes cause CAP. At present the multiplex serotype immunoassay is restricted to only 14 serotypes, the pneumococcal conjugate vaccine (PCV13) serotypes and serotype 8, and this limitation is probably why no serotype was identified for one-third of their patients with *S pneumoniae* CAP. Future technical developments are likely to increase the numbers of serotypes that can be detected and partially overcome this problem. Interestingly, the multiplex immunoassay increased the sensitivity of microbiological confirmation of *S pneumoniae* CAP, identifying 144 cases in which the established urinary antigen test (Binax NOW, Portland, Maine, USA) was negative. This provides a potential justification for using this technology independent of the possible advantages in identifying serotype.

Second, capsular serotype could identify patients at risk of specific complications of CAP. Serotype affects *S pneumoniae* resistance to complement, phagocytosis, adhesion to epithelial cells and virulence in mouse models. Probably related to these biological effects of serotype, in human disease duration of *S pneumoniae* colonisation, the number of episodes of invasive disease per colonisation event, mortality and ability to cause empyema are all linked to serotype. For example, before the introduction of infant vaccination the top five capsular serotypes causing *S pneumoniae* sepsicaemia and meningitis were 14, 19F, 6B, 23F and 18C, yet 80–90% of cases of *S pneumoniae* empyema are caused by serotypes 1, 3, 7F and 19A. Until now it was not clear whether the serotypes commonly causing empyema simply reflected their dominance as serotypes causing CAP or a specific affinity for invading the pleural space. Bewick et al found that only one of the three commonest CAP serotypes frequently causes empyema, and overall only 40% of cases of CAP were caused by serotypes associated with empyema. Similarly a recent Spanish study which used a multiplex PCR to identify *S pneumoniae* serotypes in culture-positive patients with CAP showed serotypes 4, 5 and 8 are more likely and serotypes 19F and 6B less likely to cause an associated septicemia. In addition, infection with serotype 3 is clearly associated with increased mortality. These data demonstrate specific *S pneumoniae* serotypes are associated with important complications of CAP such as empyema, septicaemia and death. Identifying infecting serotype could therefore help risk stratify patients with *S pneumoniae* CAP, and identify those who might benefit from earlier intervention such as drainage of pleural effusions. Furthermore, comparing the biology of serotypes associated with specific disease phenotypes will help characterise the bacterial and host factors involved in the pathogenesis of infection at different sites.

Third, Bewick et al have provided additional data suggesting that *S pneumoniae* infection in younger patients is largely restricted to a limited number of highly invasive serotypes. As discussed above, serotype affects the ability of *S pneumoniae* to cause invasive disease with attack rates (number of cases of meningitis or septicaemia per colonisation episode) ranging from 0 to 75 for different serotypes. Bewick et al found a direct correlation between increasing age and comorbidities and infection with less invasive serotypes, supporting the hypothesis that advancing age allows less aggressive *S pneumoniae* serotypes to cause disease. The increasing incidence of less invasive serotypes with age and comorbidity (both markers for increased mortality) may also explain the seemingly paradoxical observation that infection with more invasive serotypes has a lower mortality than infection with less invasive serotypes. One caveat to these data is that the exclusion of serotype 14 and 19A strains from the invasive serotype group by Bewick et al could be challenged as both serotypes have high attack rates, including these serotypes in the invasive group could have altered the statistically significant association of less invasive serotypes with increasing age and comorbidities.

The final reasons why data on *S pneumoniae* serotypes causing adult lung infection are important are the implications for prevention by vaccination. Although most of the serious *S pneumoniae* infections occurring in adults are CAP, the adult *S pneumoniae* vaccine (PPV, based on pneumococcal capsular polysaccharide from the commonest 23 serotypes) only prevents *S pneumoniae* septicemia and meningitis and has little efficacy against lung infection. The childhood PCV vaccine also uses capsular antigen but...
linked to a protein carrier so it is much more immunogenic in children than PPV. PCV has been highly successful in children, preventing invasive *S. pneumoniae* infections and colonisation with vaccine serotypes, and reducing the incidence of pneumonia. Due to herd immunity, PCV vaccination of children has also been associated with reduced incidence of *S. pneumoniae* CAP with vaccine serotypes in adults. PCV coverage was originally limited to seven serotypes, but has recently increased to 13. The increased immunogenicity of PCV over PPV (at least in children) and the evidence that it induces mucosal immunity suggests that vaccination of adults with PCV might prevent *S. pneumoniae* CAP. However, there are no data to support the use of PCV in adults as yet; large-scale trials are in progress. PPV and PCV only give serotype-specific protection, so identifying which serotypes cause CAP is clearly critical for assessing what the impact of PCV13 could be on adult CAP, and perhaps for choosing serotypes to be included in a future version of PCV for adults. Bewick *et al* show that if PCV is effective at preventing adult CAP, then using the PCV15 could prevent up to 57% of cases of disease. This proportion is probably an underestimate as in their study one-third of cases could not be serotyped and the multiplex assay is unlikely to be 100% sensitive. Hence even if the PCV15 vaccine only prevents a proportion of adult CAP caused by vaccine serotypes this still could have considerable effects on respiratory morbidity and mortality. As a consequence, the results of the current trials of PCV in adults are of great importance. A theoretical bonus of PCV vaccination in adults could be prevention of respiratory morbidity and mortality. As study one-third of cases could not be serotyped, so identifying which serotypes cause CAP will be an essential tool for choosing which serotypes should be included in future PCV preparations and for monitoring changes in *S. pneumoniae* ecology in response to vaccination.

Correction notice This article has been corrected since it was published online first. The name Berwick has been updated to Bewick.

Competing interests JSB received a travel grant from GSK to attend the American Thoracic Society conference in 2011.

Provenance and peer review Commissioned; internally peer reviewed.

Published Online First 12 March 2012

doi:10.1136/thoraxjnl-2012-201739

REFERENCES

Pneumococcal capsular serotypes and lung infection

Jeremy Stuart Brown

Thorax 2012 67: 473-474 originally published online March 12, 2012
doi: 10.1136/thoraxjnl-2012-201739

Updated information and services can be found at:
http://thorax.bmj.com/content/67/6/473

These include:

References
This article cites 12 articles, 6 of which you can access for free at:
http://thorax.bmj.com/content/67/6/473#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Epidemiologic studies (1829)
- Lung infection (97)
- TB and other respiratory infections (1273)
- Inflammation (1020)
- Child health (843)
- Pneumonia (infectious disease) (579)
- Pneumonia (respiratory medicine) (562)
- Drugs: infectious diseases (968)
- Vaccination / immunisation (158)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/