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Transient receptor potential channels mediate the
tussive response to prostaglandin E2 and bradykinin

Megan Grace,1,2 Mark A Birrell,1,2 Eric Dubuis,1 Sarah A Maher,1,2 Maria G Belvisi1,2,3

ABSTRACT
Background Cough is the most frequent reason for
consultation with a family doctor, or with a general or
respiratory physician. Treatment options are limited and
a recent meta-analysis concluded that over-the-counter
remedies are ineffective and there is increasing concern
about their use in children. Endogenous inflammatory
mediators such as prostaglandin E2 (PGE2) and bradykinin
(BK), which are often elevated in respiratory disease
states, are also known to cause cough by stimulating
airway sensory nerves. However, how this occurs is not
understood.
Methods We hypothesised that the transient receptor
potential (TRP) channels, TRPA1 and TRPV1, may have
a role as ‘common effectors’ of tussive responses to
these agents. We have employed a range of in vitro
imaging and isolated tissue assays in human, murine and
guinea pig tissue and an in vivo cough model to support
this hypothesis.
Results Using calcium imaging we demonstrated that
PGE2 and BK activated isolated guinea pig sensory
ganglia and evoked depolarisation (activation) of vagal
sensory nerves, which was inhibited by TRPA1 and
TRPV1 blockers (JNJ17203212 and HC-030031). These
data were confirmed in vagal sensory nerves from TRPA1
and TRPV1 gene deleted mice. TRPV1 and TRPA1
blockers partially inhibited the tussive response to PGE2
and BK with a complete inhibition obtained in the
presence of both antagonists together in a guinea pig
conscious cough model.
Conclusion This study identifies TRPA1 and TRPV1
channels as key regulators of tussive responses elicited
by endogenous and exogenous agents, making them the
most promising targets currently identified in the
development of anti-tussive drugs.

INTRODUCTION
Cough is the most frequent reason for consultation
with a family doctor,1 or with a general or respi-
ratory physician. Patients with chronic cough
probably account for 10e38% of respiratory
outpatient practice in the USA.2 Chronic cough of
various aetiologies is a common presentation to
specialist respiratory clinics, and is reported as
a troublesome symptom by 7% of the population.3

Treatment options are limited. A recent meta-
analysis concluded that over-the-counter (OTC)
cough remedies are ineffective4 and there is
increasing concern about the use of OTC therapies
in children. Despite its importance, our under-
standing of the mechanisms which provoke cough
is poor.

The respiratory tract is innervated by sensory
afferent nerves which are activated by mechanical
and chemical stimuli.5 Activation of capsaicin-
sensitive C-fibres and acid-sensitive, capsaicin-
insensitive mechanoreceptors innervating the
larynx, trachea, and large bronchi regulate the
cough reflex.5 6 Endogenous inflammatory media-
tors are often elevated in respiratory disease states.
For example, higher concentrations of prosta-
glandin E2 (PGE2)7 and bradykinin (BK)8 have been
found in the airways of patients with asthma and
chronic obstructive pulmonary disease. PGE2 and
BK are also known to cause cough by stimulating
airway sensory nerves.9 10 Furthermore, increased
PGE2 levels have been found in idiopathic cough
and cough associated with post-nasal drip, gastro-
oesophageal reflux disease, cough variant asthma
and eosinophilic bronchitis.11 It has previously been
demonstrated that PGE2 activates guinea pig,
mouse and human airway sensory nerves and
causes cough via EP3 receptor activation.10 BK
activates guinea pig airway sensory nerves and
elicits cough via activation of the B2 receptor, but it
is not known if the same process occurs in other
species.9 Although we do have some information
regarding which G-protein-coupled receptors
(GPCRs) are activated by these endogenous tussive
agents, it is still unclear what post-receptor
signalling pathways are involved.
Recently, ion channels of the transient receptor

potential (TRP) class such as TRPV1 have been
implicated in the afferent sensory loop of the
cough reflex12 13 and in the heightened cough sensi-
tivity seen in disease.14 TRPA1 is a Ca2+-permeant
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Figure 1 Establishing concentration responses for prostaglandin (PGE2) and bradykinin (BK) in the in vitro preparations and in vivo cough model.
(AeD) Concentration responses showing increases in intracellular calcium ([Ca2+]i) for PGE2 and BK in primary neurons isolated from guinea pig
jugular (A, B) and nodose (C, D) ganglia. In each panel, histograms show an increase in [Ca2+]i for increasing concentrations of tussive agent. To take
into account multiphasic shapes of some responses and their lengths, the calcium flux (area under curve (AUC)) generated by applications of tussive

Cough

892 Thorax 2012;67:891–900. doi:10.1136/thoraxjnl-2011-201443

 on A
pril 9, 2024 by guest. P

rotected by copyright.
http://thorax.bm

j.com
/

T
horax: first published as 10.1136/thoraxjnl-2011-201443 on 12 June 2012. D

ow
nloaded from

 

http://thorax.bmj.com/


non-selective channel with 14 ankyrin repeats in its amino
terminus which also belongs to the larger TRP family. TRPA1
channels are activated by a range of natural products such as
allyl isothiocyanate, allicin and cannabinol, found in mustard
oil, garlic and cannabis15e17 and by environmental irritants (eg,
acrolein, present in air pollution, vehicle exhaust and cigarette
smoke),18e20 and is primarily expressed in small diameter,
nociceptive neurons where its activation contributes to the
perception of noxious stimuli such as itch.18 20 21 It has been
demonstrated that stimulating TRPA1 channels activates vagal
broncho-pulmonary C-fibres in rodent lung,22e24 inducing a late
asthmatic response in sensitised rodents following allergen
challenge25 and causing cough in guinea pig models and in
normal human volunteers.26 Although many exogenous stimuli
are known to activate TRPA1 and TRPV1, it is still unknown
how cough and other reflexes are elicited in health and disease by
endogenous agents, and whether these ion channels are
involved. We hypothesised that the TRPA1 and TRPV1 ion
channels may have a role as common effectors for such tussive
agents.

METHODS
Isolated vagal ganglia
Intracellular free calcium ([Ca2+]i) measurements were
performed in dissociated jugular and nodose neurons. These
studies were performed on all isolated vagal neurons (not airway
specific), with the concentrationeresponse data representing an
overview of responding and non-responding cells. For subse-
quent antagonist studies only responding cells were analysed,
with the criteria for a ‘responsive cell’ judged as an increase in
[Ca2+]i of $10% of the K50 response. In each case, N ¼ number
of animals and n ¼ number of cells tested. Comprehensive
methods are detailed in online supplementary text.

Isolated vagus nerve preparation
Guinea pigs or mice (C57BL/6, Trpa1�/� and Trpv1�/�) were
sacrificed by injection of sodium pentobarbitone (200 mg/kg
intraperitoneal injection). The vagus nerves were removed and
experiments conducted in our fully characterised isolated vagus
preparation, as described in previous publications.10 26 Human
vagal tissue (n¼6, two men, 27e72-year-old donors with no
respiratory disease) was obtained from two sourcesdtransplant
tissue surplus to requirements (Harefield Hospital, UK); and
purchased from the International Institute for the Advancement
of Medicine (Edison, New Jersey, USA). In all cases, the tissue
was consented for use in scientific research and ethics approval
obtained from the Royal Brompton & Harfield Trust. See online
supplementary text for full methods.

Conscious guinea pig cough model
Conscious unrestrained guinea pigs were placed in individual
plastic transparent whole-body plethysmograph chambers
(Buxco, Wilmington, North Carolina, USA) and cough detected
as previously described.10 26

Data analysis and statistics
For imaging, RM is the maximum response observed expressed as
a percentage of the K50 response. EC50 values quoted in the
imaging studies are the concentrations of drug that produced 50%
of the maximum response obtained. Inhibition of agonist
responses in the isolated vagus nerve preparation was analysed by
two-tailed paired t test, comparing responses to the agonist in the
absence and presence of an antagonist in the same piece of nerve.
Inhibition of cough by TRPA1 and TRPV1 antagonists in vivo

was analysed by KruskaleWallis test for multiple comparisons
with Dunn’s post hoc test, comparing responses from each
group of antagonist/vehicle combination to the vehicle-only
control. Data are presented as median 6 IQR, with statistical
significance set at p<0.05.

RESULTS
Characterising agonist responses in isolated vagal ganglia
Capsaicin and acrolein produced concentration-related increases
in [Ca2+]i in sensory neurons (supplementary figure 1AeD).
PGE2 stimulation was multiphasic in both ganglia, of which
56.3% of jugular and 40% of nodose neurons responded. Overall,
PGE2 increased [Ca2+]i in jugular neurons with an RM of 4169%
at 10 mM and an EC50 of 5.0761.0 mM (N¼5, n¼16); whereas, in
nodose neurons RM was only 1162% at 10 mM with an EC50 of
3.1160.4 mM (N¼4, n¼15). 52.9% of jugular neurons and 37.5%
of nodose neurons responded to BK stimulation. Overall, BK
induced 2264% RM at 10 mM, with an EC50 of 2.3260.36 mM in
jugular neurons (N¼5, n¼17); and 1763% RM at 30 mM with an
EC50 of 2.260.2 mM in nodose neurons (N¼5, n¼24) (figure
1AeD).

Characterising agonist responses in vitro and in vivo
Capsaicin and acrolein produced concentration-related
increases in depolarisation of guinea pig, mouse and human
vagus nerve (online supplementary figure 1EeG). BK and PGE2
concentration dependently activated both guinea pig and
mouse isolated vagus nerves, whereas the corresponding vehi-
cles did not induce depolarisation (figure 1E,F). BK (3 mM) and
PGE2 (10 mM) also activated human afferent sensory nerves
(n¼5e6, data not shown). The GPCR mediating the tussive
effects of PGE2 has already been established as the EP3
receptor.10 Here, we show that BK activates only the B2

receptor in human and guinea pig, but B1 and B2 receptors in

agents is normalised, and expressed as percentage of response to K50. The tussive agent used is indicated above each set of histograms and the
concentration below each bar in mM (N¼4e5, n¼15e24). The trace in the lower left shows a typical recording of the light intensity over time
following exposure to the agonist. Time and duration of drug application are indicated by a black bar above the trace. Time scale is given by the 1 min
length-equivalent black bar shown below the trace. On the bottom right are display images taken during the recording. Time of the snapshot is
indicated below each picture with zero being the start of tussive agent application. The pseudo colour code used for light intensity in the pictures is
represented on the right of each set of images. (E, F) Perfusion for 2 min of BK (black bars) or PGE2 (white bars) activated (E) guinea pig and (F) mouse
isolated vagus nerves in a concentration-dependent manner, measured as depolarisation of the nerve in mV (n¼6). (G) The G-protein coupled receptor
mediating BK-induced depolarisation (3 mM in guinea pig and 1 mM in mouse tissue) was identified as the B2 receptor in human (n¼1e2) and guinea
pig (n¼6), and a combination of B1 and B2 receptors in the mouse (n¼6) by incubating the nerve with either B1 (R715, 1 mM; checked bars) or B2
(WIN 64338, 10 mM; striped bars) selective antagonists for 10 min, measured as % inhibition of agonist responses. (E) BK (filled circles) and PGE2
(open circles) also induced concentration-related coughing in the conscious guinea pig, measured as the total number of coughs counted during 10 min
of aerosol stimulation (n¼4e8). Data are expressed as mean 6 SEM of n observations (AeG) or median 6 IQR (H). Statistical significance is
indicated by *p<0.05 and **p<0.01, calculated as a paired t-test comparing responses in the same piece of nerve (human data were not analysed
due to low numbers). Veh, vehicle. This figure is produced in colour in the online journaldplease visit the website to view the colour figure.

[Continued]
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Figure 2 Characterisation of transient receptor potential channel A1 (TRPA1)-selective and TRPV1-selective antagonists in the in vitro primary ganglia and
isolated vagus nerve preparations. The TRPA1 antagonist HC-030031 (HC) or TRPV1 antagonists JNJ17203212 (JNJ) or capsazepine (CAPZ) were assessed
for their ability to inhibit capsaicin (black bars) and acrolein (white bars) responses in isolated guinea pig jugular neurons and guinea pig, mouse or human
isolated vagus nerves. (A) HC concentration-dependently inhibited acrolein-induced (10 mM) increases in [Ca2+]i in guinea pig isolated jugular neurons, but
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the mouse isolated vagus (figure 1G). It is possible that BK is
inducing airway sensory afferent activation and cough via
production of prostanoids.27 28 However, incubation of the
vagus nerve with indomethacin did not alter BK-induced acti-
vation of either the guinea pig (20611% inhibition, p>0.05) or
wild-type mouse sensory nerves (13610% inhibition; n¼6,
p>0.05; data not shown). The magnitude of BK-induced
sensory nerve depolarisation was also similar in wild-type
compared with EP3�/� mouse vagus (n¼6, p>0.05; data not
shown), which is the GPCR through which PGE2 causes cough.
Depolarisations to BK, PGE2, acrolein and capsaicin were
abolished with the sodium channel blocker tetrodotoxin (n¼3;
100% inhibition, data not shown). Further evidence for the
observed depolarisation being mediated via sensory nerve
activation comes from the in vivo experiments, demonstrating
that BK and PGE2 successfully induce concentration-related
coughing in conscious guinea pigs (figure 1H).

Characterising antagonist responses in isolated vagal ganglia
Concentration responses for the TRPV1-selective antagonist
JNJ17203212 (JNJ) and TRPA1-selective antagonist HC-030031
(HC) were established in primary jugular cells for their ability to
inhibit agonist-induced increases in [Ca2+]i (figure 2A). JNJ
concentration-dependently inhibited increases in [Ca2+]i caused
by the TRPV1-selective agonist capsaicin, with a maximal effect
of 8662% at 10 mM. Alternatively, HC concentration-dependently
inhibited increases in [Ca2+]i induced by the TRPA1-selective
agonist acrolein, with a maximal effect of 7668% at 0.1 mM. At
the concentration which caused maximal inhibition of its own
receptor, 10 mM JNJ did not inhibit acrolein, and 0.1 mM HC did
not inhibit capsaicin stimulation of jugular cells (figure 2A).

Characterising TRP-selective antagonists in vitro
Depolarisation of guinea pig and mouse vagus nerve by acrolein
was concentration-dependently inhibited with the TRPA1-
selective antagonist HC. Similarly, capsaicin responses were
concentration-dependently inhibited by the TRPV1-selective
antagonists capsazepine (CAPZ) and JNJ (figure 2B,C). At the
concentration which maximally inhibited acrolein, HC (10 mM)
did not inhibit capsaicin-induced nerve depolarisation; and
equally CAPZ (10 mM) and JNJ (100 mM) did not inhibit acrolein-
induced nerve depolarisation (figure 2B,C). This suggests that
these compounds are not exhibiting off-target actions at these
concentrations. Subsequently, the effects of HC (10 mM) and JNJ
(100 mM) were investigated in human isolated vagus. In these
experiments (n¼2e3), acrolein responses were abolished by HC
but not affected by JNJ; whereas, capsaicin responses were
abolished by JNJ but not affected by HC (example traces shown
in figure 2D). Vehicle control (0.1% dimethyl sulfoxide (DMSO)
vol/vol) did not inhibit agonist responses (data not shown).

Determining the role of TRPA1 and TRPV1 in PGE2 and BK
induced vagal ganglia and sensory nerve activation in vitro
Having characterised the available tools, and confirmed
selectivity of the antagonists, the role of TRPA1 and TRPV1 in

PGE2-induced and BK-induced vagal ganglia and nerve stimula-
tion was established. HC (0.1 mM) or JNJ (10 mM) partially
inhibited PGE2-induced (5564% and 4069%, respectively) or
BK-induced (4565% and 4667%, respectively) increases in [Ca2
+]i in guinea pig primary cells isolated from jugular vagal ganglia
(p<0.01). Furthermore, when used in combination, HC and JNJ
inhibited PGE2-induced [Ca2+]i elevation by 8863% and BK by
80612% (p<0.0001). In contrast, vehicle incubation had no
effect on [Ca2+]i (�1611% for PGE2 and �468% for BK;
p>0.05) (figure 3A,B).
TRPA1 antagonism with HC partially inhibited PGE2 and BK

responses in the guinea pig isolated vagus nerve (4465% and
4763%, respectively). Additionally, TRPV1 antagonism with
CAPZ or JNJ also partially inhibited PGE2 (4563% and 4864%,

had no effect on capsaicin (1 mM) at the concentration which maximally inhibited its own receptor (0.1 mM). Similarly, JNJ concentration-dependently
inhibited capsaicin-induced responses, but had no effect on acrolein at 10 mM (N¼3e4, n¼5e19). (B, C) HC concentration-dependently inhibited acrolein-
induced (300 mM) depolarisation of the guinea pig and wild-type mouse isolated vagus nerves, but had no effect on capsaicin (1 mM) stimulation.
Conversely, TRPV1 antagonism with capsazepine or JNJ17203212 concentration-dependently inhibited capsaicin-induced depolarisation in guinea-pig and
mouse isolated vagus nerves, but had no effect on acrolein stimulation at 10 mM or 100 mM, respectively (n¼6). (D) Representative traces showing
inhibition of human vagus nerve depolarisation with 10 mM HC when stimulated with acrolein (300 mM) but not capsaicin (1 mM). Conversely, 100 mM JNJ
inhibited capsaicin but not acrolein responses (n¼2e3). Black lines represent agonist incubation (2 min) and grey bars antagonist incubation (10 min). Data
are presented as mean 6 SEM of n observations, calculated as % inhibition of agonist responses. *(p<0.05), **(p<0.01) and ***(p<0.0001) indicate
statistical significance, paired t-test comparing responses in the same piece of nerve. Veh, vehicle for the antagonist (0.1% dimethyl sulfoxide).

[Continued]

Figure 3 Determining the role of transient receptor potential channel
A1 (TRPA1) and TRPV1 in prostaglandin E2 (PGE2) and bradykinin (BK)
induced isolated primary jugular neurons. The TRPA1 antagonist HC-
030031 (HC, 0.1 mM; white bars); TRPV1 antagonist JNJ17203212
(JNJ, 10 mM; striped bars); and a combination of HC+JNJ (black bars)
were assessed for their ability to inhibit (A) 1 mM PGE2 and (B) 10 mM
BK responses in isolated guinea pig jugular neurons. HC or JNJ partially
inhibited PGE2 and BK responses, whereas HC+JNJ almost completely
abolished increases in [Ca2+]i. Data are presented as mean 6 SEM of
N¼3e5, n¼10e19 observations, calculated as % inhibition of agonist
responses. **(p<0.01) and ***(p<0.0001) indicate statistical signifi-
cance, paired t-test comparing responses in the same neuron. Veh,
vehicle for the antagonist (0.1% dimethyl sulfoxide).

Cough

Thorax 2012;67:891–900. doi:10.1136/thoraxjnl-2011-201443 895

 on A
pril 9, 2024 by guest. P

rotected by copyright.
http://thorax.bm

j.com
/

T
horax: first published as 10.1136/thoraxjnl-2011-201443 on 12 June 2012. D

ow
nloaded from

 

http://thorax.bmj.com/


Figure 4 Determining the role of transient receptor potential channel A1 (TRPA1) and TRPV1 in prostaglandin E2 (PGE2) and bradykinin (BK) induced
sensory nerve activation. The TRPA1 antagonist HC-030031 (HC 10 mM; white bars), TRPV1 antagonists capsazepine (CAPZ 10 mM; grey bars) and
JNJ17203212 (JNJ 100 mM; striped bars), and a combination of HC+JNJ (black bars) were assessed for their ability to inhibit PGE2 (10 mM) and BK
(3 mM in guinea pig and human, and 1 mM in mouse tissue) isolated vagus nerve responses. (A, B) HC, CAPZ or JNJ partially inhibited PGE2 and BK
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respectively) and BK responses (5563% and 4968%, respec-
tively) (p<0.05). When used in combination, HC+JNJ abolished
vagus nerve responses to PGE2 (9064%) and BK (9564%)
(p<0.0001; figure 4A,B). To further confirm these results the
experiments were repeated in a second species. The mouse was
chosen because we have access to Trpa1�/� and Trpv1�/� mice,
and have previously shown that mouse vagus responds in
a similar fashion to human isolated vagus.10 26 Knockdown of
the TRPA1 or TRPV1 gene was confirmed by genotyping (figure
4C). Vagal nerve activation induced by acrolein and capsaicin
were initially assessed to ensure phenotypical loss of TRPA1 and
TRPV1 responses (data not shown). The results obtained in
guinea pigs were then confirmed by comparing the magnitude of
stimulation of the endogenous tussive agents in wild-type mice
to that of Trpa1�/� and Trpv1�/� animals. The Trpa1�/� and
Trpv1�/� responses to PGE2 and BK stimulation were approxi-
mately half those seen in wild-type mouse vagal tissue (p<0.01;
data not shown).

In agreement with the results obtained from guinea pig vagus,
wild-type mouse nerve responses to PGE2 and BK were partially
inhibited by HC (4762% and 5165%, respectively), CAPZ
(4964% and 4866%, respectively) and JNJ (5465% and 4665%,
respectively) (p<0.05). When used in combination, HC+JNJ
abolished vagus nerve responses to PGE2 (9464%) and BK
(9563%) (p<0.0001; figure 4D,E). And when tissue taken from
genetically modified animals was tested in combination with the
alternative antagonist, responses were again virtually abolished.
In Trpa1�/� tissue PGE2 was inhibited 9166% and 9464%; and
BK 8767% and 9763% by CAPZ and JNJ, respectively (p<0.01;
figure 4D,E). In Trpv1�/� tissue, PGE2 was inhibited 9268% and
BK 8966% by HC (p<0.01; figure 4D,E).

We were able to confirm the above results in human vagal
tissue (n¼2e3). In these experiments, both PGE2 and BK were
partially inhibited by either HC or JNJ antagonism with
complete inhibition when the antagonists were used in combi-
nation. Vehicle control (0.1% DMSO vol/vol) did not inhibit
agonist responses (figure 4F,G).

Determining a role for TRPA1 and TRPV1 in PGE2 and BK induced
guinea pig cough
Concentration responses for the selective agonists capsaicin
(TRPV1; figure 5A) and acrolein (TRPA1; figure 5B) were
initially established to determine a submaximal concentration
for which to test the antagonists (60 mM capsaicin and 100 mM
acrolein). Subsequently, the maximally effective doses of the
selective antagonists HC (TRPA1) and JNJ (TRPV1) which did
not display off-target effects on the alternative receptor were
determined. HC dose-dependently inhibited acrolein-induced
cough in vivo, but at 300 mg/kg had no effect on capsaicin; and
JNJ concentration-dependently inhibited capsaicin-induced
cough but at 100 mg/kg had no effect on acrolein in conscious
guinea pigs (figure 5C,D).

The selective antagonists were then tested against PGE2-
induced and BK-induced cough, appropriate concentrations of
which had been determined earlier (300 mg/ml PGE2 and 3 mg/
ml BK) (figure 1H). The in vivo guinea pig cough results agree
with the in vitro findings. When pretreated with vehicle control,
PGE2 induced coughs in response to 10 min aerosol stimulation.
This was reduced with either HC or JNJ pretreatment, respec-
tively. Similarly, pretreatment with HC or JNJ antagonists
reduced BK-induced coughing compared with vehicle control
(figure 5E,F). When pretreated with a combination of HC+JNJ,
the cough responses to PGE2 and BK were completely abolished
(figure 5E,F).

DISCUSSION
Despite its importance, our understanding of the mechanisms
which provoke cough and the endogenous tussive agents
involved in health and disease is poor. Chronic cough is often
associated with an underlying inflammatory condition, as in
asthma and chronic obstructive pulmonary disease, but the
endogenous mediators and signal transduction pathways which
initiate cough are not known. Inflammatory diseases are asso-
ciated with enhanced release of inflammatory mediators in the
airways.7 8 Two such mediators are PGE2 and BK, which have
been shown to induce coughing in humans29 30 and animals.9 10

Interestingly, cough associated with patients who take angio-
tensin-converting enzyme (ACE) inhibitors has also been
suggested to be due to the increased levels of bradykinin.9

Furthermore, PGE2 levels have been found to be elevated in
induced sputum of patients with chronic cough.11 It has previ-
ously been demonstrated that PGE2 activates guinea pig, mouse
and human airway sensory nerves and evokes cough in guinea
pigs via the EP3 receptor.10 However, BK stimulates guinea pig
sensory nerves and elicits cough via activation of the B2

receptor.9 31 In these studies we demonstrate that BK and PGE2
are able to activate sensory jugular ganglia; depolarise guinea pig,
mouse and human vagal afferents; and evoke cough in a guinea
pig model in a concentration-related fashion. Interestingly, the
bradykinin B2 receptor mediated sensory nerve activation in the
isolated guinea pig and human vagal nerve assays but the B1
receptor also played a role in the BK-induced activation of the
mouse vagus, highlighting a species difference.
To induce coughing, post-receptor signalling pathways

downstream of GPCR coupling are likely to cause the opening of
membrane-bound ion channels leading to activation of airway
sensory nerves and subsequent coughing. Previously other
groups have presented data implicating the TRP family of ion
channels in sensory nerve activation and the cough reflex elicited
by BK.32 In these studies we have confirmed these data and
extended these findings by confirming a partial inhibition of BK-
induced sensory nerve activation by TRPV1 antagonists. Similar
results were obtained with PGE2, with the TRPV1 antagonists

responses in isolated guinea pig vagus tissue, whereas, HC+JNJ almost completely abolished nerve activation. (C) Knockdown of the TRPA1 or
TRPV1 gene was verified by genotyping. Bands were expected at 317 bp for wild-type and 184 bp for Trpa1�/�; and 984 bp for wild-type and 600 bp
for Trpv1�/� mice. C, water (negative control); bp, base pair. (D, E) HC, CAPZ or JNJ partially inhibited PGE2 and BK responses in isolated wild-type
mouse vagus tissue, whereas, HC+JNJ almost completely abolished nerve activation. In agreement with this, sensory nerves taken from genetically
modified mice Trpa1�/� or Trpv1�/� tested in combination with the alternative TRPV1 or TRPA1 antagonist also largely eliminated sensory nerve
responses to PGE2 and BK. (F, G) HC and JNJ partially inhibited PGE2 and BK responses in human isolated vagal tissue, whereas, HC+JNJ abolished
nerve depolarisation. Example traces are shown above, where black lines represent agonist incubation (2 min), and grey bars represent antagonist
incubation (10 min). Scatter plots of % inhibition are shown below and time and magnitude scales for the traces are shown in the top left hand corner.
Data are presented as mean 6 SEM of n¼6 observations for guinea pig and mouse experiments, and n¼2e3 for human experiments, calculated as %
inhibition of agonist responses. *(p<0.05), **(p<0.01) and ***(p<0.0001) indicate statistical significance, paired t-test comparing responses in the
same piece of nerve. Veh, vehicle for the antagonist (0.1% dimethyl sulfoxide).

[Continued]
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Figure 5 Determining the role of transient receptor potential channel A1 (TRPA1) and TRPV1 in prostaglandin E2 (PGE2) and bradykinin (BK)-induced cough
in conscious guinea pigs. (A) Capsaicin and (B) acrolein concentration-dependently induced coughing in conscious, unrestrained guinea pigs. Tussive agents
were aerosolised for 5 min, the number of coughs was counted during this time and for a further 5 min post stimulation (10 min total). Data are presented as
mean 6 SEM of n¼10e12 observations. (C, D) Animals received intraperitoneal injections with a concentration of TRPA1 antagonist HC-030031 (HC),
TRPV1 antagonist JNJ17203212 (JNJ) or vehicle (Veh) 1 h prior to 5 min aerosol stimulation with a tussive agonist. The number of coughs was counted
during the 5 min stimulation plus a further 5 min (10 min total). (C) HC concentration-dependently inhibited acrolein-induced coughing (100 mM; open
circles), but had no effect on capsaicin cough (60 mM; filled circles) at 300 mg/kg. (D) Conversely, JNJ concentration-dependently inhibited capsaicin-
induced cough, with no effect on acrolein at 100 mg/kg. Data are presented asmean6 SEM of n¼8e10 observations. (E, F) Animals received intraperitoneal
injection with HC (300 mg/kg; filled circles), JNJ (100 mg/kg; filled squares), a combination of both antagonists (HC+JNJ; filled triangles), or appropriate Veh
(open circles) 1 h prior to stimulation with a tussive agonist. (E) PGE2 (300 mg/ml) or (F) BK (3 mg/ml) were aerosolised for 10 min, during which time the
number of coughs was counted. Compared with vehicle control, pretreatment with either HC or JNJ significantly inhibited PGE2-induced or BK-induced
coughing; and pr-treatment with HC+JNJ abolished cough altogether. Data are presented as median 6 IQR of n¼10e12 observations. *(p<0.05),
**(p<0.01) and ***(p<0.0001) indicate statistical significance, KruskaleWallis one-way analysis of variance with Dunn’s multiple comparison post-test.
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producing partial inhibition of vagal sensory nerve activation in
all species, guinea pig jugular neurons, and in a guinea pig cough
model. At concentrations which were selective for inhibition of
TRPA1 ligands (and not TRPV1 ligands) we also found that the
TRPA1 antagonist, HC-030031 inhibited BK-induced and PGE2-
induced [Ca2+]i in jugular neurons, vagal sensory nerve activa-
tion and cough. Furthermore, both antagonists together
(JNJ17203212 and HC-030031) completely inhibited PGE2 and
BK in vitro and in vivo responses. In vitro pharmacological
sensory nerve studies were confirmed in tissue from Trpv1�/�

and Trpa1�/� gene deleted mice.
The mechanisms downstream of GPCR coupling that lead to

either sensitisation or activation of ion channels are not yet fully
understood, but phospholipase C (PLC) and protein kinase A
(PKA) pathways are thought to be important in the signalling
for a number of TRP channels.32e34 GPCR binding to Gq-coupled
receptors can lead to activation of PLC, hydrolysis of phospha-
tidylinositol-(4,5)-biphosphate (PIP2) to yield inositol-(1,4,5)-
triphosphate (IP3), production of diacylglycerol (DAG) and
activation of phosphokinase C (PKC). PKC and DAG have been
found to directly bind the TRPV1 receptor; and IP3-induced
release of intracellular calcium stores may be involved in acti-
vation of TRPA1. Moreover, PIP2 is thought to constitutively
inhibit TRP receptors. Therefore, its hydrolysis by PLC may
disinhibit these ion channels, sensitising them to subsequent
stimulation.34 Alternatively, PKA-dependent phosphorylation
can occur through activation of Gs-coupled receptors, thereby
enhancing ion channel excitability.34

A number of the functional responses elicited by BK are
caused via indirect effects, including the release of other
endogenous mediators downstream of arachadonic acid. We
established here that the stimulatory effects of BK on isolated
vagus nerves were not due to subsequent release of prostanoids
by using the general cyclo-oxygenase inhibitor indomethacin.
However, a number of studies have also implicated downstream
release of lipoxygenase products. For example, BK evokes the
release of 15-HETE from airway epithelial cells.27 Furthermore,
12-lipoxygenase and 5-lipoxygenase products have been impli-
cated in BK-induced stimulation of airway afferent nerve
terminals via TRPV1 channel activation.35 It is therefore plau-
sible that BK may be causing cough via the release of lipox-
ygenase products downstream of arachadonic acid.

In this paper, we have used in vitro cellular and tissue prep-
arations, and an in vivo animal model to investigate the cough
reflex. The data generated with these models are useful in
attempting to understand cough; however, each model has its
limitations. In the calcium-imaging preparation, we cannot
determine if there are phenotypical changes induced in the
primary ganglia cells during the isolation process. One of the
benefits of the isolated vagus nerve preparation is that we can
parallel our animal experiments in human tissue. However, the
agents being tested are applied to the axon of the vagus nerve
(not the nerve endings), meaning that the extracellular depo-
larisation signal recorded represents a summation of the change
in membrane potential of all the nerve fibres being carried by the
vagus. In addition, receptor expression and signal transduction
mechanisms may differ from those at the peripheral endings.
Finally, though the conscious guinea pig cough model is gener-
ally considered to be a valid tool for studying the cough reflex,
there are a number of reported differences between the actions
of certain drugs in guinea pig and man. These differences could
be due to strong tachykinin-driven responses via sensory nerves
in the guinea pig airways or because potential anti-tussives have
been trialled in clinical studies in which cough was not the

primary endpoint and where there was no objective cough
monitoring and so any efficacy may have been hard to capture.
Furthermore, in guinea pig studies compounds are often not dose
limited as they are in the clinic due to safety concerns.
The findings presented here are important for our under-

standing of the cough reflex (and in particular inflammatory and
ACE inhibitor induced cough) and strongly support a role for
TRPA1 and TRPV1 as common effectors of the tussive response
to endogenous tussive agents. These studies were conducted in
tissues and in vivo models under ‘normal’ physiological condi-
tions and so a role for these TRP channels has not been estab-
lished under pathophysiological conditions. However, it has
been shown that patients suffering from chronic cough exhibit
an increased TRPV1 expression within the lungs, which was
correlated with an increase in cough sensitivity to capsaicin
challenge,14 indicating that TRP channels could be common
effectors of tussive responses in disease and that these channels
could be associated with long-term potentiation of the cough
reflex. Studies have not yet been conducted to show if TRPA1 is
overexpressed in pathological cough in man because suitable
antibodies are not available but these will be important studies
to perform when appropriate tools are developed. Current
research investigating the pathogenesis of cough supports the
development of TRP channel inhibitors as novel and selective
treatment modalities.
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METHODS 

Animals 

Male Dunkin-Hartley guinea-pigs (300-500g) and C57BL/6 mice (18-20g) were purchased 

from Harlan (Bicester, Oxon, U.K.), and housed in temperature-controlled (21°C) rooms with 

food and water freely available for at least 1 week before commencing experimentation. 

Breeding pairs of mice devoid of the TRPA1 (Trpa1-/-) or TRPV1 (Trpv1-/-) gene that had 

been backcrossed on to the C57BL/6 background were obtained from Jackson Laboratories 

(Bar Harbour, ME). Breeding colonies were maintained at Imperial College, London. 

Experiments were performed in accordance with the U.K. Home Office guidelines for animal 

welfare based on the Animals (Scientific Procedures) Act of 1986. 

 

Isolated vagal ganglia 

Cell dissociation 

Guinea-pigs were sacrificed by injection of pentobarbitone (20 mg/kg, i.p.). Nodose and 

jugular ganglia were dissected free of adhering connective tissue and isolated by enzymatic 

digestion. Ganglia were incubated with activated papain (Sigma, Papain type 200U/ml in 

Ca2+-free, Mg2+-free Hanks' balanced salt solution) for 30 minutes at 37°C followed by 

incubation for 40 minutes with type 4 collagenase (Worthington,  2mg/ml) and Dispase II 

(Roche, 2.4mg/ml), with gentle agitation every 5 minutes. The neurons were dissociated by 

tituration with fire-polished glass Pasteur pipettes of decreasing tip pore size and washed by 

centrifugation for 1 minute (1400 rpm, 380g) at 37°C. The supernatant was decanted and the 

pellet of tissues and cells carefully homogenised in HBSS at room temperature. Cells were 

separated from the remaining tissue by two centrifugations at 22°C: 8 min (1400 rpm, 380g) 

in L15 medium containing 20% Percoll (v/v) and 2 min (2300 rpm, 1030g) in L15 medium. 

The cells were resuspended in complete F-12 medium and plated in poly-d-lysine/Laminin 



(22.5 ug/ml) coated fluorodishes. Neurons were allowed to adhere for 2h in a 37°C, 5% CO2 

environment, then gently flooded with 2ml of complete F12 medium (10% FBS, 1% 

penicillin 10,000U/ml – streptomycin 10mg/ml). Plates were used for experimentation within 

24h. 

 

Calcium imaging 

Intracellular free calcium ([Ca2+]i) measurements were performed in dissociated jugular and 

nodose neurons. Fluorodishes were loaded with Fluo-4 AM (6 μM, Invitrogen) for agonist 

experiments, or Fluo-2 AM (3 µM, Invitrogen) for antagonist experiments for 40 min in the 

dark at 25°C and allowed to rest for 30 min in the dark at 25°C. After washing, a fluoro dish 

was placed in a full incubation chamber mounted on the stage of a widefield inverted 

microscope Zeiss Axiovert 200 (Carl Zeiss Inc., NY, USA) and held at 37°C.  Signals were 

recorded using an Hamamatsu EM-CCD C9100-02 camera run by Simple PCI software. CA 

Xenon gas Arc lamp Cairn ARC Optosource Illuminator, a Quad filter set Ex 485-20 Bs 475-

495 Em 510-53120x and a LD Plan-Neofluar AIR Korr objective were used to generate 

excitatory signal and record emission. 

Neurons were constantly superfused with 37°C ECS buffer using an in house designed 

pressurized solution-changing perfusion system allowing complete bath (600µl volume) 

replacement in 3s. Prior to experiments, the cells were superfused for 10 min with ECS-only. 

50 mM potassium chloride solution (K50) was applied at the start and end of each experiment 

for 10s to assess cell viability and normalise responses. Stock solutions of agonists and 

antagonists were diluted 1/1000 in ECS to make a working solution. Capsaicin or acrolein 

was applied for 10-20s, PGE2 for 20-30s and BK for 40-60s (N=4-6 animals, n=15-26 cells 

per drug tested). After each application of drug, cells were washed with ECS until complete 

recovery of baseline [Ca2+]i. Images were acquired with a frequency of 1Hz from 30s prior to 



drug application and for 2min afterward, and at 0.2Hz otherwise. To take into account the 

multiphasic responses obtained in some cells the area under curve of calcium signal (total 

elevation of calcium above resting level over time or calcium flux) was used to measure 

responses, which were normalised to calcium flux generated by application of K50. Only 

neurons producing a fast response to K50 which was washable within 5min, and that had 

diameter of over 20 μm were analysed. 

The ability of TRPA1-selective (HC-030031) and TRPV1-selective (JNJ17203212) 

antagonists to inhibit submaximal acrolein (10 µM) and capsaicin (1 µM )-induced changes in 

[Ca2+]i was investigated in jugular cells. CR curves were established for HC-030031 (0.001, 

0.01, 0.1, 1 µM) or vehicle (0.1% DMSO) against acrolein; and JNJ17203212 (1, 10, 100 

µM) or vehicle (0.1% DMSO) against capsaicin. [Ca2+]i  responses were recorded using Fura-

2, with only one concentration of antagonist assessed per plate. Once appropriate 

concentrations of the antagonists had been determined, the effect of 0.1 µM HC-030031 on 

capsaicin and 10 µM JNJ17203212 on acrolein stimulated [Ca2+]i elevation was investigated 

to establish that there was no off-target effect at the concentration chosen. These antagonist 

concentrations were subsequently used to inhibit PGE2 (1 µM) and BK (10 µM) responses in 

jugular neurons (N=3-4, n=10-19). 

 

Isolated vagus nerve preparation 

Initially, concentration-response curves were established for the agonists. Concentrations of 

vehicle (distilled water or ethanol, 0.1% vol/vol), PGE2 or BK were applied to guinea-pig 

(PGE2 3-100 µM; BK 1-30 µM) or mouse (PGE2 and BK 0.1-100 µM) nerves in a random 

order for 2 minutes each, including a wash period to retain baseline membrane potential 

between stimulations. No more than five stimulations were generated per section of nerve. 

From this, a submaximal dose of each agonist was chosen for future experiments: 10 µM 



PGE2; and 1 µM BK in the mouse and 3 µM BK in the guinea-pig. The ability of PGE2 

(10µM) and BK (3µM) to stimulate human vagus nerves was also determined. Human vagal 

tissue (n = 6 patients, 2 male, 27-72 year old donors with no respiratory disease) was obtained 

from two sources – transplant tissue surplus to requirements (Harefield Hospital, UK); and 

purchased from IIAM (International Institute for the Advancement of Medicine, Edison, NJ). 

In all cases, the tissue was consented for use in scientific research and ethics approval 

obtained. 

 The GPCR through which PGE2 induces cough has been identified as the EP3 receptor 

[S1]. However, the GPCR through which BK signals has not yet been comprehensively 

investigated using selective ligands. Therefore, the ability of B1 (1µM R715) or B2-selective 

(10µM WIN 64338) antagonists to inhibit BK-induced human, guinea-pig and mouse sensory 

nerve depolarisation was examined. These were based on using concentrations 10-fold higher 

than the reported antagonist affinity for the mouse (B1; [S2]) or guinea-pig (B2; [S3]) 

receptor. There has been a suggestion that BK may activate sensory nerves indirectly by 

inducing production of prostaglandins. To investigate this, a general cyclooxygenase inhibitor 

(10µM indomethacin) was tested according to our standard antagonist protocol to see if BK 

responses were altered. In addition, depolarisation to BK was assessed in both wild type and 

genetically modified mice with the EP3 gene deleted (EP3
-/-). Tetrodotoxin (TTX, 3µM) was 

also used to assess whether depolarisation to these tussive agents was sensitive to sodium 

channel blockade indicating a role for sensory nerve activation. The concentration of TTX 

was based on previous functional experiments in isolated airway tissue shown to inhibit 

neuronal responses [S4]. 

Concentration-response curves were established for TRPA1-selective (HC-030031) and 

TRPV1-selective (capsazepine and JNJ17203212) antagonists, or vehicle (dimethyl sulfoxide 

[DMSO], 0.1% vol/vol) using previously established submaximal doses of the selective 



agonists acrolein (300 µM) and capsaicin (1 µM). From this, the dose of antagonist exhibiting 

maximal inhibition of its receptor was chosen for further experiments.  To demonstrate that 

these antagonists were not exhibiting off-target effects, 10 µM HC-030031 was also tested 

against the TRPV1 agonist capsaicin; and 10 µM capsazepine and 100 µM JNJ17203212 

were tested against the TRPA1 agonist acrolein. The ability of TRP-selective antagonists to 

inhibit PGE2 and BK-induced sensory nerve depolarisation was comprehensively profiled in 

wild type mouse and guinea-pig tissue (n=6), and was also assessed in human tissue when 

available (n=2-3). Concentrations of both agonists and antagonists used for human vagus 

nerve were the same as for guinea-pig experiments. To further confirm that the inhibition 

observed with selective antagonists was due to inhibition of the TRPA1 or TRPV1 ion 

channel, we performed parallel experiments using vagal tissue from Trpa1-/- and Trpv1-/- 

mice. Knockdown of the TRPA1 or TRPV1 gene was confirmed in the genetically modified 

mice using standard genotyping techniques. 

 

Conscious guinea-pig cough model 

Conscious unrestrained guinea-pigs were placed in individual plastic transparent whole-body 

plethysmograph chambers (Buxco, Wilmington, NC, USA), and cough detected as previously 

described [S1, S5]. Concentration-responses were established for capsaicin (15-90 µM, 

n=10), acrolein (10-300 mM, n=12), PGE2 (30-300 µg/ml; n=8), BK (0.3-10 mg/ml; n=4), or 

appropriate vehicle (1% ethanol, 1% Tween 80 in 0.9% sterile saline; 0.9% sterile saline; 

0.1M phosphate buffer; or 0.9% sterile saline, respectively). Stimuli were aerosolised for 5 

min (capsaicin and acrolein) or 10 min (PGE2 and BK). Coughs were counted for 10 min, 

both with the Buxco cough analyser and by a trained observer. From these experiments, a 

submaximal dose of agonist was identified for further experiments.  



To determine an appropriate dose of TRPA1 and TRPV1-selective antagonist, guinea-pigs 

were injected i.p. with HC-030031 (30-1000 mg/kg), JNJ17203212 (10-1000 mg/kg) or 

appropriate vehicle (0.5% methylcellulose in 0.9% saline or 15% solutol in 5% dextrose 

solution, respectively). One hour later the guinea-pigs were exposed to 5 minutes of a 

submaximal dose of TRP-selective agonist (100 mM acrolein or 60 µM capsaicin). Coughs 

were counted during this period, and for a further 5 minutes post-stimulation (10 minutes 

total). Once a concentration had been established that maximally inhibited its own receptor, 

this concentration was tested against the alternate agonist to confirm receptor selectivity at the 

chosen dose. Guinea-pigs received two i.p. injections of either: (a) TRPA1 vehicle (0.5% 

methylcellulose in 0.9% saline) plus TRPV1 vehicle (15% solutol in 5% dextrose solution); 

(b) TRPA1 antagonist (300 mg/kg HC-030031) plus TRPV1 vehicle; (c) TRPA1 vehicle plus 

TRPV1 antagonist (100 mg/kg JNJ17203212); or (d) TRPA1 antagonist plus TRPV1 

antagonist. One hour later the guinea-pigs were exposed to 10 minutes of aerosolised PGE2 

(300 µg/ml, n=12) or BK (3 mg/ml, n=10-11), and the number of coughs counted during this 

period. 

 

Compounds and Materials 

PGE2 was purchased from Cayman Chemical (Ann Arbor, Michigan, USA). The TRPA1 

inhibitor HC-030031 was purchased from ChemBridge (San Diego, USA). The TRPV1 

inhibitor JNJ17203212 was a kind gift from Glaxo SmithKline, who also provided the 

excipient Solutol (BASF, Ludwigshafen, Germany). All other agents were purchased from 

Sigma-Aldrich (Poole, Dorset, U.K.) 

 

Isolated vagal ganglia experiments: Fluo-4 AM and Fura-2 AM were purchased from 

Molecular Probes/Invitrogen. L-15 and Hanks' balanced salt solution (HBSS) were purchased 



from Gibco/Invitrogen (Carlsbad, CA, USA). The 50mM potassium solution (K50) contained 

(in mM): 50 KCl, 91.4 NaCl, 1 MgCl2, 2.5 CaCl2, 0.33 NaH2PO4, 10 glucose, 10 HEPES; pH 

adjusted to 7.4 at 37°C using KOH). Capsaicin was dissolved in 100% DMSO, PGE2 in 100% 

ethanol, and BK in dH2O. Stock solutions were diluted 1/1000 in extracellular solution (ECS) 

buffer (in mM: 5.4 KCl, 136 NaCl, 1 MgCl2, 2.5 CaCl2, 0.33 NaH2PO4, 10 glucose, 10 

HEPES; pH adjusted to 7.4 at 37°C using NaOH) to the desired final concentrations. Final 

vehicle concentration was 0.1% for the calcium measurements. 

 

In vitro vagus experiments: All Krebs salts were obtained from BDH (Dorset, U.K.), and 

Krebs Hanseleit solution was made fresh on a daily basis (mM: NaCl 118; KCl 5.9; MgSO4 

1.2; CaCl2 2.5; NaH2PO4 1.2; NaHCO3 25.5; glucose 5.6). TTX stock was dissolved in 20mM 

citric acid. All other agonists and antagonsits were dissolved in 100% distilled water, DMSO 

or ethanol. Aliquots were diluted down 1/1000 in Krebs solution for testing. 

 

In vivo cough experiments: Acrolein was supplied in liquid form at 15M. A 1M stock was 

made in saline (0.9%) and diluted in saline to 100mM. A 10mM stock of capsaicin was made 

in ethanol and diluted in vehicle to obtain 1% ethanol and 1% Tween 80 in 0.9% saline. 

Bradykinin was dissolved in 0.9% saline to working solution, accounting for the acetate 

conversion factor (1.06). PGE2 was dissolved in 0.1M phosphate buffer to a working solution. 

HC-030031 (300 mg/ml) was suspended in vehicle (0.5% methyl cellulose in sterile saline); 

JNJ17203212 (100 mg/ml) was suspended in vehicle (15% solutol in 5% dextrose solution or 

0.5% methyl cellulose in sterile saline), total dosing volume 10 ml/kg i.p. 

 

RESULTS 

Characterising agonist responses in isolated vagal ganglia 



Capsaicin increased intracellular free calcium ([Ca2+]i)  in jugular neurons with an EC50 of 

1.43 ± 0.13 µM and a maximum response (RM) of 75 ± 14% at 10 µM (N=5, n=24), but on 

average triggered a small response in nodose neurons (RM 5 ± 2% at 10 µM, EC50 1.62 ± 0.14 

µM; N=5, n=18). It should be noted that robust responses to capsaicin are observed in a small 

population of nodose neurons [S6, S7]; and in the capsaicin-responsive nodose cells in this 

study we did see some significant increases in [Ca2+]i. However, our data represent an 

overview of all responding and non-responding cells, of which 62.5% of jugular neurons and 

16.7% of nodose neurons were responsive to capsaicin stimulation (Supplementary Figure 1A 

& 1C). Different types of response were observed for acrolein in the jugular compared to 

nodose ganglia. Primary jugular cells responded in a multi-phasic pattern, showing periods of 

repetitive sharp [Ca2+]i elevations, with an EC50 of 3.4 ± 0.39 µM  and 126 ± 18% RM at 30 

µM (N=6, n=24). Whereas, acrolein-induced [Ca2+]i elevations in the nodose ganglia were 

mono-phasic, with an EC50 of 8.14 ± 1.1 µM and 163 ± 31% RM at 30 µM (N=6, n=26) 

(Supplementary Figure 1B & 1D). Interestingly, 54.2% of jugular neurons and 53.8% of 

nodose neurons responded to acrolein stimulation. 

 

Figure Legends 

Figure S1. Characterisation of TRPA1- and TRPV1-selective agonists in the in vitro 

primary ganglia and isolated vagus nerve preparations. 

Panels A-D: Cocentration responses showing increases in intracellular calcium ([Ca2+]i) for 

TRPV1 selective (capsaicin) and TRPA1 selective (acrolein) agonists in primary neurons 

isolated from (A & B) guinea-pig jugular and (C & D) nodose ganglia. In each panel, 

histograms show an increase in [Ca2+]i for increasing concentrations of tussive agent. To take 

into account multiphasic shapes  of some responses and their lengths, the calcium flux (area 

under curve) generated by applications of tussive agents is normalised, and expressed as 



percentage of response to K50. The response obtained is expressed as percentage of response 

to K50. The tussive agent used is indicated above each set of histograms and the 

concentration below each bar in µM (N=5-6, n=18-26). The trace in the lower left shows a 

typical recording of the light intensity over time following exposure to the agonist. Time and 

duration of drug application are indicated by a black bar above the trace. Time scale is given 

by the 1 minute length-equivalent black bar shown below the trace. On the bottom right are 

display images taken during the recording. Time of the snapshot is indicated below each 

picture with zero being the start of tussive agent application. The pseudo colour code used for 

light intensity in the pictures is represented on the right of each set of images. 

Panels E & F: Perfusion for 2 minutes of capsaicin (black bars) or acrolein (white bars) 

activated (E) guinea-pig and (F) mouse isolated vagus nerves in a concentration-dependent 

manner, measured as depolarisation of the nerve in mV (n=6). 

Panel G: Perfusion for 2 minutes of capsaicin (1 µM) or acrolein (300 µM) but not vehicle 

(0.1% DMSO v/v) activated human isolated vagus nerves, measured as depolarisation of the 

nerve in mV (n=4-8). Data is expressed as mean ± s.e.m of n observations. Veh = vehicle. 
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