positive ≥15 mm for those with prior BCG. Children with borderline or positive Mantoux test results, or in whom there was clinical concern, were referred for consultant assessment and/or IGRA (QuantiFERON Gold). Data were collected retrospectively from case notes.

Results 976 children were referred. 756 completed initial assessment (388 (51%) male, mean age 6.2±4.6 years, range 0.16–16.36 years). BCG history was known in 754 (99.7%; 516 BCG). 403 patients were discharged without intervention, 63 were offered BCG vaccination, two were referred elsewhere and 288 were referred for consultant assessment. Of these 288, 108 were not identified with TB infection; 403 patients had a positive IGRA. 126/252 had TB infection (91 active and 35 latent TB)—see Abstract P175 table 1. A Mantoux threshold of ≥15 mm identified 77 (61%) children with TB infection, IGRA identified 92 (73%) and the two tests combined identified 100 (79%) children.

Abstract P175 Table 1 Mantoux and IGRA in children with TB infection

<table>
<thead>
<tr>
<th>GIFTN negative</th>
<th>GIFTN indeterminate</th>
<th>GIFTN positive</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mantoux neg</td>
<td>18</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>Mantoux borderline</td>
<td>6</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Mantoux positive</td>
<td>5</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>5</td>
<td>126</td>
</tr>
</tbody>
</table>

Conclusion Using a Mantoux threshold of ≥15 mm induration significantly underestimates the number of children with TB infection compared with using Mantoux and IGRA together.

P176 **DOES BCG PROTECT AGAINST ATOPIC DISEASES ONLY FOR A LIMITED TIME PERIOD?**

doi:10.1136/thoraxjnl-2011-201054c.176

M F Linehan, R M Niven, D N Baxter, T L Frank. *The University of Manchester, Manchester, UK*

Allergic diseases such as atopic asthma are believed to have their origins in early life but the precise mechanisms and timings of the relevant immunoregulation continue to be a focus of research. One area of investigation has been the role of vaccinations in Th cytokine regulation. Epidemiological studies investigating the potential of BCG, a potent immunomodulator, to reduce the risk of atopic disease have reported conflicting results.

A Manchester study (MANCAS), using a cohort of children all born in the same hospital in the mid-1990s identified a lower risk of wheeze for children given neonatal BCG. Data analysis for a follow-up study 6 years later when the cohort was aged 13–17 yrs has just been completed. Using the same definitions for wheeze and asthma as the first study there was no difference in prevalence of wheeze or asthma between BCG vaccinated and non-vaccinated adolescents (Abstract P176 table 1). Significance tests between the studies were not performed because some participants responded only to one of the two studies. A Medical Research Council study in the 1950s investigating the effectiveness of a vaccination programme to prevent tuberculosis identified a progressive decrease in the efficacy of BCG in successive 5-year periods with 80% efficacy 5 years post vaccination reducing to 58% 10–15 yrs after vaccination. If the decrease in efficacy of BCG modifies its ability to protect against atopy it may be that the conflicting results in studies investigating BCG and atopy have occurred because the protection afforded by BCG is limited to within a timeframe after vaccination.

Abstract P176 Table 1 Asthma/wheeze prevalence

<table>
<thead>
<tr>
<th></th>
<th>Asthma (3KQ)</th>
<th>Asthma (3KQ1Mo5)</th>
<th>Wheeze</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.6% (126)</td>
<td>16.3% (127)</td>
<td>17.2%</td>
</tr>
<tr>
<td></td>
<td>17.5% (176)</td>
<td>23.2% (250)</td>
<td></td>
</tr>
<tr>
<td></td>
<td><0.02</td>
<td><0.02</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

P177 **EVOLUTION OF LUNG FUNCTION IN PRIMARY CILIARY DYSKINESIA: A TWO CENTRE RETROSPECTIVE STUDY**

doi:10.1136/thoraxjnl-2011-201054c.177

1M Maglione, 2A Bush, 2C Hogg, 1S Montella, 1F Santamaria. 1Department of Paediatrics, Federico II University, Naples, Italy; 2Department of Respiratory Medicine, Royal Brompton Hospital, London, UK

Background Evolution of spirometry in primary ciliary dyskinesia (PCD) and its determinants are unclear. To assess morbidity and burden of this condition, we investigated the progression of spirometry in patients from two European centres.

Methods Ninety-six patients with PCD (Naples, Italy, n=21; London, UK, n=75) were enrolled. Sixty-five (Naples, n=15; London, n=50) with 4 years spirometry were analysed longitudinally. Best annual FEV1, corresponding FVC, both expressed as z-scores, and sputum culture results were recorded.

Results In Naples and London, age at referral to the centre was 9.8 (range, 0.1–20.2) and 6.1 years (range, 0.1–17.3), respectively (p=0.02), while age at first spirometry was 11.6 (range, 8.1–20.2) and 8.4 years (range, 4.2–17.3), respectively (p<0.001). In both centres patients with situs inversus (Naples, n=15; London, n=36) were referred earlier (p<0.001). Despite later diagnosis, Naples children had better baseline FEV1 and FVC z-scores (−0.53 (1.60) vs −1.66 (1.35), and 0.50 (1.55) vs −1.36 (1.52), p<0.001 respectively) when first seen. Slopes of FEV1 z-scores over 4 years were −0.05 (95% CI −0.36 to 0.26) and 0.05 (95% CI −0.05 to 1.65) in Naples and London, respectively (p=0.38). No significant correlation was found between slopes of FEV1 z-scores and age at referral or baseline FEV1 z-score. *Haemophilus influenzae* infection was the most frequently isolated pathogen (95% and 79% of subjects in Naples and London, respectively, p=0.85). Naples subjects had higher prevalence of *Pseudomonas aeruginosa* (62% vs 56%, p=0.04). *Pseudomonas* isolation was not associated with worse baseline FEV1 z-scores or slopes of FEV1 z-scores.

Conclusions The better lung function despite later diagnosis in Naples is apparently unexplained. However, as spirometry in PCD is stabilised during treatment, its short-term evolution is not related to age at referral or to baseline FEV1. Spirometry is thus not a useful end-point for randomised controlled trials of treatment. Late diagnosis is common for patients without situs anomalies. Although the potential impact of *P. aeruginosa* infection on PCD lung function is unclear, its unexpectedly high prevalence merits further study to determine best prevention and management strategies.

EVOLUTION OF LUNG FUNCTION IN PRIMARY CILIARY DYSKINESIA: A TWO CENTRE RETROSPECTIVE STUDY

doi:10.1136/thoraxjnl-2011-201054c.177

1M Maglione, 2A Bush, 2C Hogg, 1S Montella, 1F Santamaria. 1Department of Paediatrics, Federico II University, Naples, Italy; 2Department of Respiratory Medicine, Royal Brompton Hospital, London, UK

Background Evolution of spirometry in primary ciliary dyskinesia (PCD) and its determinants are unclear. To assess morbidity and burden of this condition, we investigated the progression of spirometry in patients from two European centres.

Methods Ninety-six patients with PCD (Naples, Italy, n=21; London, UK, n=75) were enrolled. Sixty-five (Naples, n=15; London, n=50) with 4 years spirometry were analysed longitudinally. Best annual FEV1, corresponding FVC, both expressed as z-scores, and sputum culture results were recorded.

Results In Naples and London, age at referral to the centre was 9.8 (range, 0.1–20.2) and 6.1 years (range, 0.1–17.3), respectively (p=0.02), while age at first spirometry was 11.6 (range, 8.1–20.2) and 8.4 years (range, 4.2–17.3), respectively (p<0.001). In both centres patients with situs inversus (Naples, n=15; London, n=36) were referred earlier (p<0.001). Despite later diagnosis, Naples children had better baseline FEV1 and FVC z-scores (−0.53 (1.60) vs −1.66 (1.35), and 0.50 (1.55) vs −1.36 (1.52), p<0.001 respectively) when first seen. Slopes of FEV1 z-scores over 4 years were −0.05 (95% CI −0.36 to 0.26) and 0.05 (95% CI −0.05 to 1.65) in Naples and London, respectively (p=0.38). No significant correlation was found between slopes of FEV1 z-scores and age at referral or baseline FEV1 z-score. *Haemophilus influenzae* infection was the most frequently isolated pathogen (95% and 79% of subjects in Naples and London, respectively, p=0.85). Naples subjects had higher prevalence of *Pseudomonas aeruginosa* (62% vs 56%, p=0.04). *Pseudomonas* isolation was not associated with worse baseline FEV1 z-scores or slopes of FEV1 z-scores.

Conclusions The better lung function despite later diagnosis in Naples is apparently unexplained. However, as spirometry in PCD is stabilised during treatment, its short-term evolution is not related to age at referral or to baseline FEV1. Spirometry is thus not a useful end-point for randomised controlled trials of treatment. Late diagnosis is common for patients without situs anomalies. Although the potential impact of *P. aeruginosa* infection on PCD lung function is unclear, its unexpectedly high prevalence merits further study to determine best prevention and management strategies.
P176 Does BCG protect against atopic diseases only for a limited time period?

M F Linehan, R M Niven, D N Baxter and T L Frank

Thorax 2011 66: A139
doi: 10.1136/thoraxjnl-2011-201054c.176

Updated information and services can be found at:
http://thorax.bmj.com/content/66/Suppl_4/A139.1

These include:

References
This article cites 4 articles, 0 of which you can access for free at:
http://thorax.bmj.com/content/66/Suppl_4/A139.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Child health (843)
Asthma (1782)
Drugs: infectious diseases (968)
Vaccination / immunisation (158)
Epidemiologic studies (1829)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/