CASE BASED DISCUSSION

A[H1N1] flu and refractory hypoxaemia: Is extracorporeal lung support the holy grail?

T V Veenith, M Rana, A Ercole, K Gunning, R Mahroof

ABSTRACT

There is a call for methodologically robust randomised clinical trials in adult extracorporeal membrane oxygenation for its routine implementation for patients with “failing” conventional ventilation. Adherence to lung protective ventilation strategies, along with fluid balance [if required early renal replacement therapy] and inotropes to support the circulation to minimise ventilator-induced lung injury, may mitigate deterioration requiring extracorporeal lung support. Currently there is no convincing evidence to routinely advocate extracorporeal lung support in failed conventional ventilation, and a prospective trial is needed to define standard best practice and to tailor extracorporeal lung support referral criteria in young patient cohort with severe refractory respiratory failure.

VENTILATORY MANAGEMENT OF REFRACTORY HYPOXIA

Histopathological data have shown similarities between acute respiratory distress syndrome (ARDS) and A[H1N1]-associated lung injury. Both cause diffuse alveolar damage, with varying degrees of inflammatory infiltrates and pulmonary haemorrhage. Severe acute lung injury causes a reduction in the static compliance and ventilation–perfusion mismatch. Subjecting the lung to excessive volume or pressure during mechanical ventilation (MV) results in an additional alveolar epithelial cell injury-induced inflammatory process that may worsen both lung compliance and gas exchange. Hence, prevention of ventilator-induced lung injury (VILI) due to volutrauma and barotrauma is at the heart of LPV strategy.

The basis of LPV strategy is to use a low tidal volume (VT; 4–8 ml/kg of ideal body weight), plateau pressure ≤30 cm H2O, inverse ventilation ratio (I:E) and reduction of oxygen toxicity, and to titrate PEEP to FiO2 to maintain a PaO2 ≥8 kPa. In the case of A[H1N1] this strategy would be tolerated by this young cohort of patients. However, resultant hypercapnoea could lead to increased intracranial pressure, myocardial depression, pulmonary hypertension and reduction in renal perfusion. An evidence-based LPV strategy has been shown to reduce in-hospital and 28 day mortality; currently we allow permissive hypercapnoea to a pH >7.2 and permissive hypoxaemia to PaO2 >8 kPa. Our management algorithm is summarised in figure 1.

ADJUNCTIVE VENTILATOR THERAPIES

Prone ventilation (PV) can be used in ARDS with refractory hypoxaemia to improve oxygenation. However, improvement in mortality with PV is seen only in a subset of patients with severe refractory hypoxaemia. This would be difficult in your patient because of high BMI. High frequency oscillatory ventilation (HFOV) is an alternative technique to conventional ventilation in severe hypoxaemic respiratory failure, with little benefit in maintenance of PaCO2. HFOV uses small VT’s (usually less than the anatomical dead space) and is delivered at high frequencies (3–15 Hz). A recent meta-analysis has shown a reduction in in-hospital mortality.
and 30-day mortality along with a reduced risk of ‘treatment failure’ when compared with conventional ventilation in ARDS. A UK multicentre study into HFOV in ARDS is currently underway (OSCAR Trials No. ISRCTN10416500).

ECLS: EXTRACORPOREAL MEMBRANE OXYGENATION (ECMO) AND EXTRACORPOREAL CO2 REMOVAL (ECCO2R)

ECLS was first used in 1972, and in an ICU setting it encompasses both an ECCO2R device (iLA by Novalung, Talheim, Germany) and veno-arterial (VA) or veno-venous (VV) ECMO. ECLS enables the use of a lower VT, at aptly named ‘rest settings’ to reduce VILI and any ventilator-associated haemodynamic compromise.6 The Glenfield Hospital, Leicester criteria for ECMO are: reversible cause of respiratory failure, <7 days high pressure or high FiO2 ventilation, Murray score >3 (weighted score of: CXR quadrants, PaO2/FiO2 ratio on FiO2 1.0, PEEP and lung compliance), severe hypercarbic pH <7.20 with no contraindication(s) for anticoagulation. ECCO2R requires arterial and venous cannulation of femoral vessels, and an adequate cardiovascular reserve to drive the pumpless arterio-venous circuit.

While the use of ECMO in neonates is an established practice,6 it is not so in adults. Previous trials in adults with ECMO have failed to show any benefit, but were done during the era prior to ‘rest setting’ LPV. A trial of conventional ventilatory support versus ECMO for severe adult respiratory failure2 (CESAR trial, single-centre study) suggested an improvement in mortality (one extra survivor for every six patients treated) without disability at 6 months. This trial has been criticised7 for heterogeneity of ventilatory management in the conventional ventilation arm, and was a pragmatic trial concluded without adequate pretrial efficacy data.

Out of the 14 patients with A[H1N1] who required MV at our hospital this winter, only one patient was referred for ECMO, but did not receive it, similar to a published series from North America.5 We had no mortality from A[H1N1] in patients treated on our ICUs. However, the UK experience with A[H1N1] over the last two winters suggests that ECLS could have a role in managing severe refractory respiratory failure. We feel that as yet there is no convincing evidence to routinely advocate ECLS in failed conventional ventilation. While there are calls for its routine implementation for patients with ‘failing’ conventional ventilation, strict adherence to LPV strategies, together with meticulous control of fluid balance (if required early renal replacement therapy) and inotropes to support the circulation and minimise VILI, may avoid the need for ECLS. Further randomised trials are still needed to identify the optimal place of ECLS within the current best practice management of refractory hypoxaemia.5

Funding Dr TV Veenith is supported by a clinical research training fellowship from the National Institute of Academic Anaesthesia (grant number RG61766 and RUAG/032).

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

1. Rowan KM, Harrison DA, Walsh TS, et al. The Swine Flu Triage (SwFT) study: development and ongoing refinement of a triage tool to provide regular information to guide immediate policy and practice for the use of critical care services during the H1N1 swine influenza pandemic. Health Technol Assess 2010;14:335–492.


A[H1N1] flu and refractory hypoxaemia: Is extracorporeal lung support the holy grail?

T V Veenith, M Rana, A Ercole, K Gunning and R Mahroof

Thorax 2011 66: 836-837 originally published online April 22, 2011
doi: 10.1136/thoraxjnl-2011-200092

Updated information and services can be found at:
http://thorax.bmj.com/content/66/9/836

These include:

References
This article cites 6 articles, 2 of which you can access for free at:
http://thorax.bmj.com/content/66/9/836#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Influenza (106)
- TB and other respiratory infections (1273)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/