Ultrasound performs better than radiographs

We applaud the British Thoracic Society (BTS) for its efforts to improve patient care through scientific evidence. We thus recognise the recent guidelines on pleural procedures and thoracic ultrasound (TUS) as an important attempt to develop a rational approach to chest sonography. However, we are concerned that the BTS has reached conclusions based on a less complete review of TUS. The guidelines state that the utility of thoracic ultrasound for diagnosing a pneumothorax is limited in hospital practice due to the ready availability of chest x-rays (CXR) and to the limitations of CXR in detecting pneumomediastinum. This conclusion appears to be based on a small (but landmark) study of 11 patients from 1986 to 1989, two small studies with only four pneumothoraces in one and another small series whose ultrasounds were retrospectively reviewed. Against these small and somewhat dated studies, a large number of recent investigations support a quite different conclusion.

Many well-performed retrospective reviews and a number of prospective studies have compared TUS to chest radiographs in the detection of pneumomediastinum. Using CXR as the criterion standard, we feel that only prospective studies utilising CT as the reference criterion are valid to assess the relative merits of ultrasound versus radiography. Although methodology and populations have varied, at least nine comparative trials, conducted in the last decade, have noted a higher sensitivity for TUS than CXR in the detection of pneumomediastinum. While the widely reported sensitivities (49%–100%) for TUS detection of pneumomediastinum has not been explained, a more important point is that, in each of these studies, the sensitivity of TUS was significantly higher than CXR. Sonographic specificities were not significantly different from those of CXR, ranging from 94% to 100%. Furthermore, in the studies where it is reported, the likelihood ratios have ranged from 36 to 155.2–4 Since a typical benchmark of a useful test is one that can generate positive likelihood ratios of greater than 10, these test characteristics have persuaded many, including the authors of two systematic reviews, that TUS is a more accurate test than supine anteroposterior CXR for the detection of pneumomediastinum. Finally, we would also like to take issue with the assumptions underlying the phrase ‘ready availability of chest x-rays’. For many critical care and emergency department patients with sudden unexplained dyspnoea, the delay involved in obtaining a ‘stat’ portable CXR can be lethal. For such patients, bedside TUS may allow for rapid initiation of life-saving interventions.

We are keenly aware that TUS has pitfalls, and that its use requires due caution by properly trained sonologists. However, recognising that guidelines are living documents reflecting best evidence, we respectfully submit that the BTS guidelines in question are thus somewhat incomplete. In our view, after further review and consensus development according to the GRADE criteria, data reported from the 21st century, far from being conflicting, provide strong and consistent evidence regarding the superiority of sonography over CXR in the diagnosis of pneumomediastinum (see online supplement).

The World Interactive Network: Focused on Critical Ultrasound (WINFOCUS) International Liaison Committee on Pleural and Lung Ultrasound (ILCPLUS) is constituted by experts in pleural and lung ultrasound and clinical epidemiology experts in the process of evidence assessment, including GRADE and RAND Appropriateness Methodologies for the development of evidence-based clinical recommendations and consensus statements.

---

Elizabeth Koshy,1 Joanna Murray,1 Alex Bottle,1 Mike Sharland,1 Sonia Saxena1

1Department of Primary Care and Public Health, Imperial College London, London, UK; 2Paediatric Infectious Diseases Unit, St George’s Hospital NHS Trust, London, UK

Correspondence to Dr Elizabeth Koshy, Department of Primary Care and Public Health, Imperial College London, Charing Cross Campus, 3rd Floor, Reynolds Building, St Dunstan’s Road, London W6 8RP, UK; e.koshy@ic.ac.uk

Provenance and peer review

Externally peer reviewed.

Competing interests

None.

Provenance and peer review

Not commissioned; not externally peer reviewed.

Accepted 8 November 2010

Published Online First 2 December 2010


REFERENCES


REFERENCES

Authors’ response
We thank Agricola and colleagues5 for their compliments on our guideline6 and their contribution to the discussion on the role of ultrasound in the detection of pneumothorax, but we maintain that the medical community should proceed with caution when using ultrasound in the detection and management of pneumothoraces. If the reviews7–7 refer to are not considered (5 papers), 13 of the remaining 24 papers referenced are in two well-defined patient groups—trauma5–6 and post-intervention.8–10 None of the papers published prospectively demonstrated improved outcomes and management change using ultrasound in comparison with chest x-ray (CXR), and perhaps more significantly only one prospective blinded study in medical patients with varying degrees of respiratory compromise has been reported and this demonstrated an unacceptably high false positive rate.11

We maintain that ultrasound is limited in its usefulness in the assessment of cases of spontaneous pneumothorax and following pleural procedures particularly in settings outside critical care. Many of these patients have underlying lung disease, particularly chronic obstructive pulmonary disease, which reduces the accuracy of pneumothorax detection by ultrasound.12 If a pneumothorax is detected by ultrasound, a CXR is usually required to assess its size (unless a CT is then performed). If the pneumothorax is so small as to be undetectable on CXR, then it is unlikely to require intervention and the use of ultrasound will not have changed the management.

We acknowledge that in the assessment of a supine patient thoracic ultrasound performed by a skilled operator may detect even small pneumothoraces (and effusions) and that if these patients require positive pressure ventilation detecting even a small amount of pleural air may be relevant. Even so, in this group, caution is needed because, as shown in the prospective study by Goodman et al13 using CT as the gold standard, small pneumothoraces may fail to be detected. The CXR is undoubtedly unreliable in the detection of small pneumothoraces in the supine patient14 and in specific clinical circumstances, as suggested by Agricola et al, ultrasound may be of value. This being the case, we agree that if a suitably skilled operator and ultrasound equipment are available at the patient’s bedside then ultrasound may provide useful diagnostic information, but we maintain that it is unlikely to obviate the need for a formal CXR.

In conclusion, we agree that in supine and trauma patients ultrasound may be a valuable tool in the detection of pneumothorax. In these patients, ultrasound may have increased sensitivity compared with a CXR, although difficulty with pneumothorax quantification suggests that ultrasound is unlikely to completely replace the need for a radiograph. In the majority of cases of spontaneous or postprocedure pneumothorax, ultrasound is unlikely to provide additional benefit over the combination of CXR and clinical judgement when deciding management.

Tom Havelock, Richard Teoh, Diane Laws, Nick Maskell, Fergus Gleeson

1. Wellcome Trust Clinical Research Facility, Southampton General Hospital, Southampton, UK. 2. Department of Respiratory Medicine, Castle Hill Hospital, Cottingham, East Yorkshire, UK. 3. Department of Thoracic Medicine, Royal Bournemouth Hospital, Bournemouth, UK. 4. Department of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, UK. 5. Department of Radiology, Churchill Hospital, Oxford, UK.

Correspondence to Dr Tom Havelock, Wellcome Trust Clinical Research Facility, Southampton General Hospital, Tremona Road, Southampton. SO16 6YD, UK. thavelock@soton.ac.uk

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 30 November 2010

Published Online First 30 December 2010


REFERENCES
Ultrasound performs better than radiographs

Eustachio Agricola, Charlotte Arbelot, Michael Blaivas, Belaid Bouhemad, Roberto Copetti, Anthony Dean, Scott Dulchavsky, Mahmoud Elbarbary, Luna Gargani, Richard Hoppmann, Andrew W Kirkpatrick, Daniel Lichtenstein, Andrew Liteplo, Gebhard Mathis, Lawrence Melniker, Luca Neri, Vicki E Noble, Tomislav Petrovic, Angelika Reissig, Jean Jacques Rouby, Armin Seibel, Gino Soldati, Enrico Storti, James W Tsung, Gabriele Via and Giovanni Volpicelli

Thorax 2011 66: 828-829 originally published online December 30, 2010
doi: 10.1136/thx.2010.153239

Updated information and services can be found at:
http://thorax.bmj.com/content/66/9/828

These include:

References
This article cites 5 articles, 0 of which you can access for free at:
http://thorax.bmj.com/content/66/9/828#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/