the absence of published data specifically relating to serotype distribution of pneumococcal pneumonia for children, this is the only up-to-date national reference source available spanning our study time frame.2 3 It provides data on pneumococcal serotype distribution for cases of invasive pneumococcal disease for 2000/1 to 2005/6 and shows that the most common serotypes present prior to the introduction of PCV7, which was relevant to our study.

We agree that it is not possible to determine fully the exact aetiology of pneumonia from an HES diagnosis, although we have made every attempt to do so. However, we do think the trends in diagnosed pneumonia following the introduction of PCV7 remain of interest.

Elizabeth Koshy, Joanna Murray, Alex Bottle, Mike Sharland, Sonia Saxena
1Department of Primary Care and Public Health, Imperial College London, London, UK; 2Paediatric Infectious Diseases Unit, St George’s Hospital NHS Trust, London, UK

Correspondence to Dr Elizabeth Koshy, Department of Primary Care and Public Health, Imperial College London, Charing Cross Campus, 3rd Floor, Reynolds Building, St Dunstan’s Road, London W6 8RP, UK; e.koshy@ic.ac.uk

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 8 November 2010
Published Online First 2 December 2010

REFERENCES


Ultrasound performs better than radiographs

We applaud the British Thoracic Society (BTS) for its efforts to improve patient care through scientific evidence. We thus recognise the recent guidelines on pleural procedures and thoracic ultrasound (TUS) as an important attempt to develop a rational approach to chest sonography.4 However, we are concerned that the BTS has reached conclusions based on a less complete review of TUS.

The guidelines state that ‘the utility of thoracic ultrasound for diagnosing a pneumothorax is limited in hospital practice due to the ready availability of chest x-rays (CXR) in the detection of pneumothoraces’ and conclude that TUS is ‘not an accurate test’ (2007). This conclusion appears to be based on a small (but landmark) study of 11 patients from 1986 to 1989, two small studies with only four pneumothoraces in one and another small series whose ultrasounds were retrospectively reviewed. Against these small and somewhat dated studies, a large number of recent investigations support a quite different conclusion.

Many well-performed retrospective reviews and a number of prospective studies have compared TUS to chest radiographs5 in the detection of pneumothoraces using CXR as the criterion standard. Noting the limitations of CXR in detecting pneumothoraces, we feel that only prospective studies utilising CT as the reference criterion are valid to assess the relative merits of ultrasound versus radiography. Although methodology and populations have varied, at least nine comparative trials, conducted in the last decade, have noted a higher sensitivity for TUS than CXR in the detection of pneumothorax. While the widely reported sensitivities (49%–100%) for TUS detection of pneumothoraces has not been explained, a more important point is that, in each of these studies, the sensitivity of TUS was significantly higher than CXR. Sonographic specificities were not significantly different from those of CXR, ranging from 94% to 100%. Furthermore, in the studies where it is reported, the likelihood ratios have ranged from 36 to 153.2 4–14 Since a typical benchmark of a useful test is one that can generate positive likelihood ratios of greater than 10, these test characteristics have persuaded many, including the authors of two systematic reviews, that TUS is a more accurate test than supine anteroposterior CXR for the detection of pneumothorax. Finally, we would also like to take issue with the assumptions underlying the phrase ‘ready availability of chest x-rays’. For many critical care and emergency department patients with sudden unexplained dyspnoea, the delay involved in obtaining a ‘stat’ portable CXR can be lethal. For such patients, bedside TUS may allow for rapid initiation of life-saving interventions.

We are keenly aware that TUS has pitfalls, and that its use requires due caution by properly trained sonologists. However, recognising that guidelines are living documents reflecting best evidence,5 we respectfully submit that the BTS guidelines in question are thus somewhat incomplete. In our view, after further review and consensus development according to the GRADE criteria, data reported from the 21st century, far from being conflicting, provide strong and consistent evidence regarding the superiority of sonography over CXR in the diagnosis of pneumothorax (see online supplement).

The World Interactive Network Focused on Critical Ultrasound (WINFOCUS) International Liaison Committee on Pleural and Lung Ultrasound (ILCPLUS) is constituted by experts in pleural and lung ultrasound and clinical epidemiology experts in the process of evidence assessment, including GRADE and RAND Appropriateness Methodologies for the development of evidence-based clinical recommendations and consensus statements.

Eastachio Agricola,1 Charlotte Arbelot,2 Michael Blaivas,1 Belaid Bouhemad,2 Roberto Copetti,4 Anthony Dean,6 Scott Dulchavsky,6 Mahmoud Elbarbary,2 Luna Gargani,8 Richard Hoppmann,3 Andrew W Kirkpatrick,2,10 Daniel Lichtenstein,11 Andrew Litpog,12 Gabhard Mathis,13 Lawrence Melniker,14 Luca Mersi,15 Vicki E Noble,17 Tomislav Petrovic,18 Angelika Reissig,17 Jean Jacques Rouby,2 Armin Seibel,18 Gino Soldati,19 Enrico Storti,20 James W Tsung,20 Gabriele Via,21 Giovanni Volpicelli21

1San Raffaele Hospital, Milan, Italy; 2ªS Vale Santépere Hospital, Pierre et Marie Curie University-Paris 6, France; 3Northside Hospital Forsyth, Cumming, Georgia, USA; 4Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 5University of Pennsylvania, Philadelphia, Pennsylvania, USA; 6Henry Ford Hospital, Detroit, Michigan, USA; 7King Saud University for Health Sciences, Riyadh, Saudi Arabia; 8National Council of Research, Pisa, Italy; 9University of South Carolina, Columbia, South Carolina, USA; 10Regional Trauma Services, University of Calgary, Calgary, Alberta, Canada; 11Paris-Ouest University, Paris, France; 12Massachusetts General Hospital, Boston, Massachusetts, USA; 13University of Innsbruck, Rankweil, Austria; 14New York Methodist Hospital, Brooklyn, New York, USA; 15Dapedale Niguarda Ca’ Granda, Milan, Italy; 16University PARIS XIII, Paris, France; 17Fondazione IRCCS Policlinico San Matteo, Pavia, Policlinico San Matteo, Pavia, Italy; 18San Luigi Gonzaga University Hospital, Torino, Italy

Correspondence to Andrew W Kirkpatrick, Regional Trauma Services, Foothills Medical Centre, 1403 29 St NW, Calgary, Alberta, T2N 2T9, Canada; andrew. kirkpatrick@albertahealthservices.ca

Competing interests This letter is being written on behalf of the WINFOCUS International Liaison Committee on Pleural and Lung Ultrasound (ILCPLUS). The goal of this group is to promote the use of point of care ultrasound although none of the members has any specific financial conflicts.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 13 November 2010
Published Online First 30 December 2010
REFERENCES

Authors’ response
We thank Agricola and colleagues for their compliments on our guideline and their contribution to the discussion on the role of ultrasound in the detection of pneumothorax, but we maintain that the medical community should proceed with caution when using ultrasound in the detection and management of pneumothoraces. If the reviews referenced are not considered (5 papers), 13 of the remaining 24 papers referenced are in two well-defined patient groups—trauma and post-intervention. None of the papers published prospectively demonstrated improved outcomes and management change using ultrasound in comparison with chest x-ray (CXR), and perhaps more significantly only one prospective blinded study in medical patients with varying degrees of respiratory compromise has been reported and this demonstrated an unacceptably high false positive rate.

We maintain that ultrasound is limited in its usefulness in the assessment of cases of spontaneous pneumothorax and following pleural procedures particularly in settings outside critical care. Many of these patients have underlying lung disease, particularly chronic obstructive pulmonary disease, which reduces the accuracy of pneumothorax detection by ultrasound. If a pneumothorax is detected by ultrasound, a CXR is usually required to assess its size (unless a CT scan is then performed). If the pneumothorax is so small as to be undetectable on CXR, then it is unlikely to require intervention and the use of ultrasound will not have changed the management.

We acknowledge that in the assessment of a supine patient thoracic ultrasound performed by a skilled operator may detect even small pneumothoraces (and effusions) and that if these patients require positive pressure ventilation detecting even a small amount of pleural air may be relevant. Even so, in this group, caution is needed because, as shown in the prospective study by Goodman et al using CT as the gold standard, small pneumothoraces may fail to be detected. The CXR is undoubtedly unreliable in the detection of small pneumothoraces in the supine patient and in specific clinical circumstances, as suggested by Agricola et al, ultrasound may be of value. This being the case, we agree that if a suitably skilled operator and ultrasound equipment are available at the patient’s bedside then ultrasound may provide useful diagnostic information, but we maintain that it is unlikely to obviate the need for a formal CXR.

We are surprised that the authors experienced significant delays in obtaining ‘stat’ portable CXRs in their critical care and emergency departments and that patients may have died as a consequence. Clinicians managing critically ill trauma patients require rapid access to portable CXRs and all institutions managing such patients should be able to deliver.

In conclusion, we agree that in supine and trauma patients ultrasound may be a valuable tool in the detection of pneumothorax. In these patients, ultrasound may have increased sensitivity compared with a CXR, although difficulty with pneumothorax quantification suggests that ultrasound is unlikely to completely replace the need for a radiograph. In the majority of cases of spontaneous or postprocedure pneumothorax, ultrasound is unlikely to provide additional benefit over the combination of CXR and clinical judgement when deciding management.

Tom Havelock, Richard Teoh, Diane Laws, Nick Maskell, Fergus Gleeson
Wellcome Trust Clinical Research Facility, Southampton General Hospital, Southampton, UK; Department of Respiratory Medicine, Castle Hill Hospital, Cottingham, East Yorkshire, UK; Department of Thoracic Medicine, Royal Bournemouth Hospital, Bournemouth, UK; Department of Clinical Sciences, Southampton University, University of Bristol, Bristol, UK; Department of Radiology, Churchill Hospital, Oxford, UK

Correspondence to Dr Tom Havelock, Wellcome Trust Clinical Research Facility, Southampton General Hospital, Tramone Road, Southampton. SO16 6YD, UK; t.havelock@soton.ac.uk

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 30 November 2010
Published Online First 30 December 2010


REFERENCES

Downloaded from http://thorax.bmj.com/ on June 22, 2017 - Published by group.bmj.com
Ultrasound performs better than radiographs

Eustachio Agricola, Charlotte Arbelot, Michael Blaivas, Belaid Bouhemad, Roberto Copetti, Anthony Dean, Scott Dulchavsky, Mahmoud Elbarbary, Luna Gargani, Richard Hoppmann, Andrew W Kirkpatrick, Daniel Lichtenstein, Andrew Liteplo, Gebhard Mathis, Lawrence Melniker, Luca Neri, Vicki E Noble, Tomislav Petrovic, Angelika Reissig, Jean Jacques Rouby, Armin Seibel, Gino Soldati, Enrico Storti, James W Tsung, Gabriele Via and Giovanni Volpicelli

Thorax 2011 66: 828-829 originally published online December 30, 2010
doi: 10.1136/thx.2010.153239

Updated information and services can be found at:
http://thorax.bmj.com/content/66/9/828

These include:

References
This article cites 5 articles, 0 of which you can access for free at:
http://thorax.bmj.com/content/66/9/828#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/