CT in COPD: just a pretty picture or really worth a thousand words (or dollars)?

Don D Sin,1,2 Jonathon Leipsic,3 S F Paul Man1,2

We like pretty pictures and, in pulmonary medicine, we use computed axial tomography (CT) to generate pretty pictures to help us diagnose and manage patients with respiratory complaints. In 2007 more than 10 million chest CT scans were performed across the USA, representing an astounding 11 000% increase in the CT rate since 1980.1 CT scans rely on ionising radiation to generate images, and recent estimates suggest that CT scans may be responsible for 24% of the total ‘background’ radiation to which the population is exposed in a given year.2 Thankfully, there are several large-scale efforts to reduce the radiation exposure related to CT scans and to mitigate the health risks imposed by ionising radiation.3 What is not being adequately addressed is the issue of economic costs (and benefits) of CT scans. CT scans are expensive for patients and to the healthcare system, with prices ranging from $500 to $1500 per scan.4

Recently, the cost-effectiveness ratio of lung cancer screening with CT scans was reported to be $2.5 million dollars per quality-adjusted life saved,5 providing us with a sobering reminder that these ‘pretty pictures’ are not without significant costs.

Chronic obstructive pulmonary disease (COPD) is a condition that lends itself to anatomical medical imaging. For practical reasons, COPD is largely defined based on spirometric criteria. However, there is general discontent with this approach because spirometric measurements are relatively insensitive and correlate only very loosely with histological abnormalities or with patient symptoms or outcomes.6 Furthermore, spirometric measurements are poorly responsive to medical interventions (even those that are known to improve morbidity and mortality) and cannot discriminate the major pathological subphenotypes of COPD—emphysema and small airways disease.6 More complete and elaborate lung function measurements provide more information but they are expensive, time-consuming, difficult to standardise and relatively inaccessible beyond large hospitals, making them non-user friendly for many practising physicians. On the other hand, high-resolution CT (HRCT) provides the clinicians with excellent anatomical detail and takes away the veil and mystery of lung function measurements. With continued evolution and refinement of this technology, the hope is that HRCT will one day complement (or even replace) lung function measurements in diagnosing and managing patients with COPD in routine clinical practice. However, is this notion realistic?

It is now well established that some current and former smokers with no or minimal pulmonary symptoms can have normal forced expiratory volume in 1 s (FEV1) and ratio of FEV1 to forced vital capacity (FVC) but still harbour significant emphysematous changes in their lungs.7 The clinical relevance of this observation, however, was unknown. The study by Mohamed Hoesen et al8 offers an answer to this clinical conundrum. Using data from 2085 current and former smokers who enrolled in the Dutch—Belgian Lung Cancer Screening Trial (NELSON), Mohamed Hoesen and colleagues showed that individuals with the largest burden of CT-based ‘emphysema’ experienced the fastest decline in lung function over 3 years of follow-up. This effect was independent of age, smoking status or baseline lung function of these individuals.8 These data are in keeping with those of Yuan et al9 who showed that lung ‘overinflation’ was associated with a rapid decline in FEV1. However, owing to the small sample size (n=143), Yuan et al could not show a relationship with more traditional CT-based measures of emphysema.7 The physiological rationale for the relationship between CT-based emphysema, lung ‘overinflation’ and rapid decline in lung function is obscure, but several possibilities exist. Although, in general, mild degrees of lung emphysema do not result in airflow limitation, they can lead to air trapping and lung ‘overinflation’.9 However, with emphysema progression, airflow limitation ensues owing to reductions in elastic recoil pressure and loss of alveolar attachments10 which leads to narrowing and premature closure of airways. Alternatively, it is possible that CT-based measures of emphysema may just be a marker of pathological changes in the small airways (eg, remodelling and fibrosis) that may be the more salient drivers of COPD progression but cannot be well visualised on HRCT scans.

The study by Mohamed Hoesen et al10 (see page 782) has several limitations that deserve emphasis. First, emphysema is a pathological (and not a radiological) diagnosis and in this study there was no histological confirmation of CT-based assessment of emphysema. Furthermore, the study used only one metric to evaluate emphysema—the extent of low attenuation areas (or dollars)?

1UBC James Hogg Research Center, St Paul’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada; 2Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, British Columbia, Canada; 3Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada

Correspondence to Don D Sin, St Paul’s Hospital, University of British Columbia, Room 8442, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada; don.sin@hli.ubc.ca

Thorax September 2011 Vol 66 No 9

741
with normal or near normal lung function are not just pretty pictures but are clinically important because they identify individuals at high risk of COPD progression and lung cancer. In such individuals it may be highly cost-effective to intervene with aggressive tobacco treatment programmes and with close observation and follow-up.

On 4 November 2010 the US National Cancer Institute (NCI) released the initial results from the National Lung Screening Trial (NSLT), showing a reduction of 20% in lung cancer mortality and a reduction of 7% in total mortality among ex-smokers and current smokers screened with low-dose CT compared with those screened with chest x-rays.15 Notwithstanding the costs associated with HRCT scans, these and other data on screening CT for lung cancer will probably lead to an exponential increase in the number of thoracic HRCT scans that will be performed over the next few years. This will present new opportunities for clinical care and research for the respiratory community. In addition to using these CT scans as tools for lung cancer screening, the data by Mohamed Hoesin et al suggest that chest physicians can also use quantitative computed tomography for tobacco addiction (if they are current smokers and current smokers screened with low-dose CT compared with those screened with chest x-rays).15

Every breath you take

Allan R Glanville

To paraphrase the ubiquitous warning applied to the perverse products of the tobacco industry, ‘breathing may be dangerous to your health’, in particular if you are a lung transplant recipient. This is especially true if you live near a major road in a region with high levels of traffic-related air pollution. Alone among solid organ transplants, the lung allograft is exposed to the ambient environment with every breath. Some environments are toxic, some more so, and the paper by Nawrot et al in Thorax (see page 748) presents a compelling argument that traffic air pollution is a strong component of the toxic environmental risk which has measurable and deleterious effects on pulmonary allograft function and recipient survival, accounting for 25% of deaths.1 Specifically, this landmark study reports for the first time the relationship between traffic air pollution and the development of the bronchiolitis obliterans syndrome (BOS) in a large and well-characterised sample of lung transplant recipients from a region where air pollution levels are high by global standards. BOS is the major risk factor for death after lung transplantation, so it is not surprising that exposure to air traffic pollution, defined by residential proximity to a major road, was also a risk factor for death after transplantation. Importantly, other potential risk factors were rigorously examined to prevent confounding and the relationship was highly significant regardless of whether distance categories from a main road were expressed as a dichotomous or continuous variable. In addition, there was a strong relationship between distance from a main road and the finding of a bronchoalveolar lavage neutrophilia, an association that implies but does not prove an aetiological link. Importantly, it makes biological sense. The findings are illuminating and may explain in part some of the reported

REFERENCES

CT in COPD: just a pretty picture or really worth a thousand words (or dollars)?

Don D Sin, Jonathon Leipsic and S F Paul Man

Thorax 2011 66: 741-742 originally published online May 14, 2011
doi: 10.1136/thx.2011.161430

Updated information and services can be found at:
http://thorax.bmj.com/content/66/9/741

These include:

References

This article cites 13 articles, 4 of which you can access for free at:
http://thorax.bmj.com/content/66/9/741#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

Health education (1223)
Smoking (1037)
Tobacco use (1039)
Health effects of tobacco use (211)
Screening (oncology) (407)
Screening (epidemiology) (366)
Screening (public health) (366)
Epidemiologic studies (1829)
Lung cancer (oncology) (670)
Lung cancer (respiratory medicine) (670)
Lung neoplasms (608)
Radiology (diagnostics) (812)
Airway biology (1100)
Lung function (773)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/