Risk of fractures with inhaled corticosteroids in COPD: systematic review and meta-analysis of randomised controlled trials and observational studies

Yoon K Loke, Rodrigo Cavallazzi, Sonal Singh

ABSTRACT

Background The effect of inhaled corticosteroids (ICS) on fracture risk in patients with chronic obstructive pulmonary disease (COPD) remains uncertain. The aim of this study was to evaluate the association between ICS and fractures in COPD.

Methods MEDLINE, EMBASE, regulatory documents and company registries were searched up to August 2010. Randomised controlled trials (RCTs) of budesonide or fluticasone versus control treatment for COPD (≥24 weeks duration) and controlled observational studies reporting on fracture risk with ICS exposure vs no exposure in COPD were included. Peto OR meta-analysis was used for fracture risk from RCTs while ORs from observational studies were pooled using the fixed effect inverse variance method.

Results Sixteen RCTs (14 fluticasone, 2 budesonide) with 17513 participants, and seven observational studies (n=69 000 participants) were included in the meta-analysis. ICSs were associated with a significantly increased risk of fractures (Peto OR 1.27; 95% CI 1.01 to 1.58; p=0.04; I²=0%) in the RCTs. In the observational studies, ICS exposure was associated with a significantly increased risk of fractures (OR 1.21; 95% CI 1.12 to 1.32; p<0.001; I²=37%), with each 500 µg increase in beclomethasone dose equivalents associated with a 9% increased risk of fractures, OR 1.09 (95% CI 1.08 to 1.12; p<0.001).

Conclusion Among patients with COPD, long-term exposure to fluticasone and budesonide is consistently associated with a modest but statistically significant increased likelihood of fractures.

BACKGROUND

The inhaled corticosteroids (ICS) fluticasone propionate and budesonide are widely used in the treatment of chronic obstructive pulmonary disease (COPD).1 The Global Initiative for Chronic Obstructive Lung Disease guidelines recommend ICS in combination with long-acting β₂-agonists (LABAs) in moderate to severe COPD to reduce the frequency of exacerbations,2 and current formulations of ICS approved for use in COPD are fluticasone with salmeterol, and budesonide with formoterol. The potential benefits of ICS are counterbalanced by their systemic adverse effects such as pneumonia and their potential to negatively impact bone health.3 4

Prior evidence on the adverse skeletal effects of ICS has been inconsistent. Published evaluations of bone mineral density (BMD) with ICS exposure are limited by considerable losses to follow-up in three large randomised controlled trials (RCTs), with bone density data available only in selected participants.5 6 7 Two trials (one fluticasone, one budesonide) reported no significant adverse effect on BMD, perhaps due to inadequate statistical power.5 6 In the Towards a Revolution in COPD Health (TORCH) subset, patients on salmeterol had a small gain in spine BMD, as compared with patients receiving salmeterol/fluticasone in combination who had a marginal decrease.5 BMD at the hip fell by 1.7% for salmeterol patients, whereas it fell by 2.9% and 3.2% in the fluticasone and salmeterol/fluticasone groups, respectively.5 In contrast, inhaled triamcinolone (not approved for COPD and no longer marketed) was found to lower BMD significantly.7

A meta-analysis of observational studies found an increased fracture risk among participants with obstructive lung disease,5 whereas other trials5 and their meta-analysis reported no significant effect.5 Thus, the effect of the currently available ICS on the risk of fractures among patients with COPD remains unclear. Our objective was to ascertain systematically the risk of fractures associated with long-term use of ICS compared with control treatments in both trials and real-world studies in patients with COPD.
METHODS

Inclusion criteria
Our inclusion criteria for RCTs were (1) parallel-group RCT of at least 24 weeks duration; (2) participants with COPD of any severity; (3) fluticasone or budesonide (which are licensed for use in COPD) as the intervention versus a control treatment, in which the comparison groups consisted of ICS versus placebo, or ICS in combination with a LABA versus a LABA alone; and (4) outcome data (including zero events) on fracture adverse events.

We also evaluated controlled observational studies (case-control, prospective cohort or retrospective cohort) reporting on the risk of fractures with any ICS exposure compared with those without ICS exposure in COPD. Eligible studies had to present ORs, RR/HRs or sufficient data to enable us to calculate the OR.

Exclusion criteria
We excluded trials of <24 weeks duration as we were interested in long-term fracture risk. We also excluded studies evaluating ICS use in acute exacerbations of COPD, or where mixed groups of participants (asthma/COPD) were enrolled but fracture outcomes were not separately reported for each group.

Search strategy
An electronic search (MEDLINE and EMBASE) was originally carried out in April 2009 as part of an earlier systematic review, and this search was updated in August 2010 (see the online Appendix 1 for search terms). We examined the websites of the US Food and Drug Administration, and European regulatory authorities, and the manufacturers’ clinical trials register of fluticasone and budesonide. The bibliographies of included studies and Cochrane Systematic Reviews were also used to identify relevant articles.

Study selection
Two reviewers (YKL and RC) independently, and in duplicate, scanned all titles and abstracts that indicated the study was an RCT or observational study evaluating the use of ICS in patients with COPD, and further assessed eligibility after retrieving full text versions of potentially relevant articles.

Study characteristics
We used a prespecified protocol to record study characteristics, diagnostic criteria for COPD, dose and frequency of interventions, mean age, sex and spirometric data of participants, and previous ICS use. The design and relevant data sources, duration of follow-up, the number of study participants and their selection criteria were recorded for the observational studies.

Risk of bias assessment
Two reviewers independently assessed the reporting of blinding, allocation concealment, withdrawals and the loss to follow-up in RCTs. In accordance with recommendations on assessing adverse effects, we extracted information on participant selection, ascertainment of exposure and outcomes, and methods of addressing confounding in observational studies. Publication bias was assessed using a funnel plot.

Data extraction
Two reviewers independently extracted data (including zero events) on fractures (where available) from trial listings of ‘Adverse Events’ or ‘Serious Adverse Events’ in the results summaries from the clinical trials register and regulatory documents. In order to avoid duplication, we extracted fracture data based on unique study identifiers where listed. Unpublished reports were subsequently matched to journal manuscripts based on sample size, duration and intervention arms, and additional data extracted where necessary. Authors were contacted for data clarification where needed. Any discrepancies were resolved with 100% agreement after rechecking the source papers and further discussion among the three reviewers.

Statistical analysis
We pooled trial data using Review Manager (RevMan) version 5.1.1 (Nordic Cochrane Center, Copenhagen, Denmark) and calculated the Peto OR, using the recommended approach for meta-analysis of rare adverse events. In situations where the fixed effect model is valid, the Peto OR provides the best CI coverage and has greater statistical power in analysing rare events as compared with the random effects model. We assessed statistical heterogeneity using the I² statistic, with I² >50% indicating a substantial level of heterogeneity. If substantial statistical heterogeneity was found, we planned to explore sources of heterogeneity. Predefined sensitivity analyses were performed to check whether different control comparators and alternative statistical models (fixed effect with no continuity correction using StatsDirect software) would substantially change the findings. Posthoc sensitivity analyses were performed based on long-term trials of >12 months duration, and trials with clear reporting of methodological components such as randomisation, blinding and follow-up.

The number needed to harm (NNH) (and 95% CI) with ICS was calculated by applying the OR estimates to the control group.
<table>
<thead>
<tr>
<th>Source</th>
<th>Location</th>
<th>Treatment duration, weeks</th>
<th>CDPD criteria 1</th>
<th>Drug</th>
<th>Male, %</th>
<th>Mean age, years (SD)</th>
<th>Mean % predicted FEV1 (SD)</th>
<th>Prior ICS use (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzueo SCO100250, 2009<sup>W16</sup></td>
<td>96 centres in the USA and Canada</td>
<td>52</td>
<td>FEV1/FVC <70%</td>
<td>SFC 50/250 μg twice daily</td>
<td>51</td>
<td>65.4 (9.1)</td>
<td>34 (11.1)</td>
<td>14</td>
</tr>
<tr>
<td>Budge FLT3054, 2000<sup>W13</sup></td>
<td>18 UK hospitals</td>
<td>156</td>
<td>FEV1/FVC <70%</td>
<td>Flu 500 μg twice daily</td>
<td>75</td>
<td>63.7 (7.1)</td>
<td>50.3 (14.9)</td>
<td>51.1</td>
</tr>
<tr>
<td>Calverley SFCB3024, 2003<sup>W18</sup></td>
<td>196 centres in 25 countries</td>
<td>52</td>
<td>ERS</td>
<td>SFC 50/500 μg twice daily</td>
<td>75</td>
<td>62.7 (8.7)</td>
<td>44.8 (14.7)</td>
<td>50</td>
</tr>
<tr>
<td>Calverley SCO30003, 2007<sup>W15</sup></td>
<td>44 centres in 42 countries</td>
<td>156</td>
<td>ERS</td>
<td>SFC 50/500 μg twice daily</td>
<td>75</td>
<td>65 (8.3)</td>
<td>44.3 (12.3)</td>
<td>47</td>
</tr>
<tr>
<td>Ferguson SCO40043, 2008<sup>W10</sup></td>
<td>94 centres in North America</td>
<td>52</td>
<td>ATS</td>
<td>SFC 50/250 μg twice daily</td>
<td>58</td>
<td>64.9 (9.0)</td>
<td>39.8 (13.9)</td>
<td>15</td>
</tr>
<tr>
<td>FLTA 3025, 2005<sup>W6</sup></td>
<td>55 centres in the USA</td>
<td>24</td>
<td>ATS</td>
<td>Flu 250 μg twice daily</td>
<td>72</td>
<td>65.2 (8.7)</td>
<td>49 (NA)</td>
<td>NA</td>
</tr>
<tr>
<td>Hanania SFCA3007, 2003<sup>W11</sup></td>
<td>76 centres in the USA</td>
<td>24</td>
<td>ATS</td>
<td>SFC 50/500 μg twice daily</td>
<td>70</td>
<td>64.8 (9.5)</td>
<td>48 (NA)</td>
<td>NA</td>
</tr>
<tr>
<td>Johneck, 2002<sup>W22</sup></td>
<td>39 centres in nine EU countries</td>
<td>156</td>
<td>FEV1/FVC <70%</td>
<td>Bud 400 μg twice daily</td>
<td>74 (full cohort)</td>
<td>52 (NA)</td>
<td>77 (NA)</td>
<td>NA</td>
</tr>
<tr>
<td>Kardos SCO30006, 2007<sup>W23</sup></td>
<td>95 centres in Germany</td>
<td>52</td>
<td>GOLD</td>
<td>SFC 50/500 μg twice daily</td>
<td>74</td>
<td>63.8 (8.3)</td>
<td>40.4 (8.9)</td>
<td>40.6</td>
</tr>
<tr>
<td>Mahler SFCA3006, 2002<sup>W24</sup></td>
<td>Multicentre USA</td>
<td>24</td>
<td>ATS</td>
<td>SFC 50/500 μg twice daily</td>
<td>76</td>
<td>64.2 (8.2)</td>
<td>40.3 (8.5)</td>
<td>44.4</td>
</tr>
<tr>
<td>Paggiaro FLIT97, 1998<sup>W25</sup></td>
<td>13 European centres</td>
<td>24</td>
<td>ERS</td>
<td>Flu 500 μg twice daily</td>
<td>99</td>
<td>64 (NA)</td>
<td>41 (NA)</td>
<td>28</td>
</tr>
<tr>
<td>SCO100470, 2006<sup>W17</sup></td>
<td>135 centres in Europe and Asia-Pacific</td>
<td>24</td>
<td>GOLD</td>
<td>SFC 50/250 μg twice daily</td>
<td>78.3</td>
<td>63.5 (9.3)</td>
<td>1654 (459)*</td>
<td>NA</td>
</tr>
<tr>
<td>SCO40041, 2008<sup>W13</sup></td>
<td>31 centres in the USA</td>
<td>156</td>
<td>FEV1/FVC ≤70%</td>
<td>SFC 50/250 μg twice daily</td>
<td>77.2</td>
<td>63.7 (9.0)</td>
<td>1681 (465)*</td>
<td>NA</td>
</tr>
<tr>
<td>SFC 01/SCO30002, 2005<sup>W13</sup></td>
<td>49 centres in Italy and Poland</td>
<td>52</td>
<td>FEV1/VC <88%</td>
<td>Flu 500 μg twice daily</td>
<td>84</td>
<td>64.6 (8.7)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Tashkin, 2009<sup>W14</sup></td>
<td>194 sites in five countries</td>
<td>26</td>
<td>Prebronchodilator FEV1 <50%, FEV1/FVC <70%</td>
<td>Bud 320/For 9 μg twice daily</td>
<td>68</td>
<td>63 (9.0)</td>
<td>33.7 (11.8)</td>
<td>NA</td>
</tr>
<tr>
<td>Wouters SCD40002, 2005<sup>W15</sup></td>
<td>39 centres in The Netherlands</td>
<td>52</td>
<td>FEV1/VC <88%</td>
<td>SFC 50/500 μg twice daily</td>
<td>73</td>
<td>63 (7.9)</td>
<td>47.4 (13.8)</td>
<td>85</td>
</tr>
</tbody>
</table>

*Reported mean FEV1, in millilitres as a percentage of predicted unavailable.

1 ATS and GOLD criteria for COPD are FEV1/FVC <70%.
2 ERS criteria for COPD are FEV1/VC <88% predicted for men and <89% predicted for women.

ATS, American Thoracic Society; Bud, budesonide; COPD, chronic obstructive pulmonary disease; ERS, European Respiratory Society; FEV1, forced expiratory volume in the first second of expiration; Flu, fluticasone propionate; For, formoterol; FVC, forced vital capacity; GOLD, Global Initiative for Chronic Obstructive Lung Disease; ICS, inhaled corticosteroid; NA, not available; Sal, salmeterol xinafoate; SFC, combination of salmeterol and fluticasone; VC, vital capacity.
event rate in a large trial population using Visual Rx, version 2.0.17 Herein, the NNH is the number of patients who need to be treated with ICS for an additional patient to be harmed by a fracture.

ORs from the observational studies were pooled separately from the RCTs, using the inverse variance, fixed effect model. We assumed similarity between the RR and OR because fractures were rare events.18 We prespecified the choice of data for analysis, starting preferentially with: (1) current and/or recent users versus remote users or non-users; (2) use within the past 6 months—1 year versus remote users or non-users; and (3) any exposure versus non-exposure. To estimate a dose—response trend as log ORs across different exposure levels, we used inverse variance-weighted least squares regression to pool studies that reported dose-specific risk estimates with one referent category.

The adjusted OR and their CIs, and the dose of ICS as beclomethasone equivalents in each exposure level, were abstracted. We estimated the median dose for each exposure level when only dose ranges were available. We assumed that open-ended exposure levels would follow the same range pattern as the previous levels. The dose—response analysis was carried out in Stata 10.0.

RESULTS

The flow chart of study selection is shown in figure 1. A total of 16 RCTs and seven observational studies fulfilled our inclusion criteria for the meta-analysis.

Table 2 Risk of bias assessment and fracture outcomes in RCTs of inhaled corticosteroids in COPD

<table>
<thead>
<tr>
<th>Source</th>
<th>Sequence generation</th>
<th>Allocation concealment</th>
<th>AE monitoring*</th>
<th>Drug (n)</th>
<th>Fracture events</th>
<th>Discontinued, n (%)</th>
<th>Loss to follow-up, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzueto SCO100250, 2009w1</td>
<td>Adequate, centrally generated block</td>
<td>Adequate</td>
<td>AE and SAEs recorded after study medication but no later than last date</td>
<td>SFC (394)</td>
<td>3</td>
<td>125 (32)</td>
<td>6 (1.5)</td>
</tr>
<tr>
<td>Burge FLT3054, 2000w2</td>
<td>Adequate, computer generated</td>
<td>Adequate</td>
<td>AE and SAEs recorded throughout the study</td>
<td>Flu (n—376)</td>
<td>4</td>
<td>160 (43)</td>
<td>16 (4.3)</td>
</tr>
<tr>
<td>Calverley SFC3024, 2003w3</td>
<td>Adequate, computer generated</td>
<td>Adequate</td>
<td>AE or SAEs occurring during treatment</td>
<td>SFC (358)</td>
<td>3</td>
<td>89 (25)</td>
<td>8 (2.2)</td>
</tr>
<tr>
<td>Calverley SFC30003, 2007w4</td>
<td>Adequate, central allocation</td>
<td>Adequate</td>
<td>AE reviewed at each visit. Prospectively specified data capture for fracture events and site of fracture</td>
<td>Placebo (n—375)</td>
<td>7</td>
<td>195 (53)</td>
<td>18 (4.9)</td>
</tr>
<tr>
<td>Ferguson SFC30003, 2009w5</td>
<td>Adequate</td>
<td>Adequate</td>
<td>AE collected at start and end</td>
<td>Sal (388)</td>
<td>3</td>
<td>149 (38)</td>
<td>10 (2.6)</td>
</tr>
<tr>
<td>Hanania SFC3007, 2003w6</td>
<td>Unclear</td>
<td>Unclear</td>
<td>AE and SAEs recorded at each visit</td>
<td>Sal (177)</td>
<td>0</td>
<td>57 (32)</td>
<td>NA</td>
</tr>
<tr>
<td>Johnell, 2002w7</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Spine x-rays on 653 patients at beginning and end of trial</td>
<td>Flu (434)</td>
<td>3</td>
<td>147 (34)</td>
<td>NA</td>
</tr>
<tr>
<td>Kardos SCO30006, 2007w8</td>
<td>Adequate, centrally generated</td>
<td>Adequate</td>
<td>AE and SAEs recorded during run in and follow-up</td>
<td>Placebo (206)</td>
<td>0</td>
<td>79 (38)</td>
<td>NA</td>
</tr>
<tr>
<td>Mahler SFC3006, 2002w9</td>
<td>Unclear</td>
<td>Unclear</td>
<td>AE and SAEs documented</td>
<td>Placebo (n—375)</td>
<td>7</td>
<td>195 (53)</td>
<td>29 (1.9)</td>
</tr>
<tr>
<td>Paggiaro FLT97, 1998w10</td>
<td>Adequate, computer generated</td>
<td>Adequate</td>
<td>AE defined as untoward medical occurrence during treatment</td>
<td>Sal (388)</td>
<td>3</td>
<td>149 (38)</td>
<td>10 (2.6)</td>
</tr>
<tr>
<td>SCO100470, 2006w11</td>
<td>Unclear</td>
<td>Unclear</td>
<td>AE and SAEs recorded at each study visit</td>
<td>SFC (94)</td>
<td>1</td>
<td>39 (42)</td>
<td>NA</td>
</tr>
<tr>
<td>SCO40041, 2009w12</td>
<td>Unclear</td>
<td>Unclear</td>
<td>On therapy AE and SAEs monitored</td>
<td>Flu (131)</td>
<td>1</td>
<td>34 (26)</td>
<td>NA</td>
</tr>
<tr>
<td>SCT 01/SCO30002, 2005w13</td>
<td>Unclear</td>
<td>Unclear</td>
<td>All AE occurring after subject consent until end of follow-up</td>
<td>Placebo (125)</td>
<td>0</td>
<td>40 (32)</td>
<td>NA</td>
</tr>
<tr>
<td>Tashkin, 2008w14</td>
<td>Computer generated in each centre</td>
<td>Unclear</td>
<td>AE checked at each clinic visit, and during the final follow-up telephone call</td>
<td>Bud/For (845)</td>
<td>1</td>
<td>125 (15)</td>
<td>13 (1.5)</td>
</tr>
<tr>
<td>Wouters SCO40002, 2005w15</td>
<td>Adequate</td>
<td>Adequate</td>
<td>AE collected at start and end of treatment</td>
<td>Placebo (n—375)</td>
<td>7</td>
<td>195 (53)</td>
<td>18 (4.9)</td>
</tr>
</tbody>
</table>

*All RCTs were double-blinded.

AE, adverse event; Bud, budesonide; COPD, chronic obstructive pulmonary disease; Flu, fluticasone propionate; For, formoterol; For/Bud, combination of formoterol and budesonide; NA, not available; RCT, randomised controlled trial; SAE, serious adverse event; Sal, salmeterol xinafoate; SFC, combination of salmeterol and fluticasone.

Randomised controlled trials

Characteristics of the included trials are shown in table 1. There were a total of 17,513 participants with COPD, with 9143 on ICS compared with 8370 controls. The duration of the trials ranged from 24 to 156 weeks, with a mean of 90 weeks across nine of the trials. Trials tended to enrol participants with severe COPD, as the mean forced expiratory volume in 1 s (FEV₁) of the participants was <50% for nine of the trials. There was a predominance of men (>50% male participants in every trial), with the mean ages typically in the 60–70 year range. Where reported, prior ICS use was noted in 25–50% of the participants, except for two trials with past ICS exposure for ~20% of patients.

Table 2 Meta-analysis of odds of fracture with inhaled corticosteroid (ICS) exposure trials of patients with chronic obstructive pulmonary disease.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>ICS Events</th>
<th>No ICS Events</th>
<th>Total Weight</th>
<th>Peto OR (ICS safe)</th>
<th>Peto OR (ICS harmful)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1 ICS-LABA vs LABA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzuto SCO100250 2009</td>
<td>3</td>
<td>0</td>
<td>394</td>
<td>0.403</td>
<td>1.0%</td>
</tr>
<tr>
<td>Calverley SCO30003 2007</td>
<td>78</td>
<td>61</td>
<td>1546</td>
<td>1542</td>
<td>43.0%</td>
</tr>
<tr>
<td>Calverley SFCB3024 2003</td>
<td>3</td>
<td>0</td>
<td>358</td>
<td>0.372</td>
<td>1.0%</td>
</tr>
<tr>
<td>Ferguson SCO40043 2008</td>
<td>3</td>
<td>3</td>
<td>394</td>
<td>0.388</td>
<td>1.9%</td>
</tr>
<tr>
<td>Hanania SFCA3007 2003</td>
<td>1</td>
<td>0</td>
<td>178</td>
<td>0.177</td>
<td>0.3%</td>
</tr>
<tr>
<td>Kardos SCO30006 2007</td>
<td>1</td>
<td>0</td>
<td>507</td>
<td>0.487</td>
<td>0.6%</td>
</tr>
<tr>
<td>Mahler SFCA3006 2002</td>
<td>0</td>
<td>0</td>
<td>165</td>
<td>0.160</td>
<td>Not estimable</td>
</tr>
<tr>
<td>SCO100470 2006</td>
<td>1</td>
<td>0</td>
<td>518</td>
<td>0.532</td>
<td>0.3%</td>
</tr>
<tr>
<td>SCO40041 2008</td>
<td>1</td>
<td>0</td>
<td>92</td>
<td>0.94</td>
<td>0.6%</td>
</tr>
<tr>
<td>Tashkin 2008</td>
<td>1</td>
<td>0</td>
<td>845</td>
<td>0.284</td>
<td>0.5%</td>
</tr>
<tr>
<td>Wouters SCO40002 2005</td>
<td>5</td>
<td>0</td>
<td>189</td>
<td>0.184</td>
<td>3.2%</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td>5186</td>
<td>4623</td>
</tr>
<tr>
<td>Total events</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z=1.86 (p=0.06)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.2 ICS alone vs Placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burge FLTB3054 2000</td>
<td>4</td>
<td>7</td>
<td>376</td>
<td>375</td>
<td>3.5%</td>
</tr>
<tr>
<td>Calverley SCO30003 2007</td>
<td>65</td>
<td>57</td>
<td>1552</td>
<td>1544</td>
<td>38.0%</td>
</tr>
<tr>
<td>Calverley SFCB3024 2003</td>
<td>2</td>
<td>1</td>
<td>374</td>
<td>361</td>
<td>1.0%</td>
</tr>
<tr>
<td>FLTA3025 2005</td>
<td>3</td>
<td>0</td>
<td>434</td>
<td>0.206</td>
<td>0.8%</td>
</tr>
<tr>
<td>Hanania SFCA3007 2003</td>
<td>0</td>
<td>0</td>
<td>183</td>
<td>0.185</td>
<td>0.3%</td>
</tr>
<tr>
<td>Johlln 2002</td>
<td>5</td>
<td>3</td>
<td>322</td>
<td>331</td>
<td>2.6%</td>
</tr>
<tr>
<td>Mahler SFCA3006 2002</td>
<td>1</td>
<td>0</td>
<td>168</td>
<td>0.181</td>
<td>0.3%</td>
</tr>
<tr>
<td>Paggioaro FLTB3054 1998</td>
<td>1</td>
<td>0</td>
<td>142</td>
<td>0.139</td>
<td>0.3%</td>
</tr>
<tr>
<td>SFCT01 2005</td>
<td>1</td>
<td>1</td>
<td>131</td>
<td>0.125</td>
<td>0.3%</td>
</tr>
<tr>
<td>Tashkin 2008</td>
<td>1</td>
<td>1</td>
<td>275</td>
<td>0.300</td>
<td>0.3%</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td>3957</td>
<td>3747</td>
</tr>
<tr>
<td>Total events</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z=1.05 (p=0.29)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 Meta-analysis of odds of fracture with inhaled corticosteroid (ICS) exposure trials of patients with chronic obstructive pulmonary disease. LABA, long-acting β₂-agonist.
Respiratory epidemiology

a significantly higher use of oral corticosteroid in the non-ICS intervention arms (online table I).

Main findings

Across the mean trial duration of 90 weeks, ICS use was associated with a significant increase in the risk of fractures (180 of 9145 (2.0%) vs 141 of 8370 (1.7%) for control); Peto OR 1.27 (95% CI 1.01 to 1.58; p=0.04) (figure 2). There was no evidence of statistical heterogeneity among the included trials (I²=0%).

Sensitivity analysis

Fixed effect meta-analysis based on the Mantel–Haenszel model (without a continuity correction) yielded similar findings of an increased OR 1.26 (95% CI 1.01 to 1.59; p=0.04) for fractures in RCTs of ICS in COPD.

The pooled Peto OR for seven trials with complete reporting of quality components was 1.23 (95% CI 0.97 to 1.55); w1 w4 w4 w12 as compared with a Peto OR of 1.75 (95% CI 0.80 to 3.73) for nine trials where some aspects regarding the process of randomisation were not fully reported. w5 w6 w7 w9 w11 w14

Restricting the pooled analysis to four long-term trials (each of 156 weeks duration) w2 w4 w8 w10 w15 as compared with a Peto OR of 1.19 (95% CI 0.80 to 1.65) that is slightly lower than the overall pooled estimate. This may be due to higher quality studies, or change in risk with time. However, the reliability of fracture estimates from long-term trials such as TORCH is limited by significantly higher oral corticosteroid exposure (online table I) and withdrawals (with some crossover to ICS treatment) in the placebo arms.19

Publication bias

The funnel plot for fractures appeared to be symmetrical for the RCTs (online figure 1).

Number needed to harm

The NNH for fractures was estimated at 83 (95% CI 58 to 2107) over the 3 year ICS treatment period in the trial, based on the 5.1% fracture rates in the salmeterol and placebo arms for the TORCH trial.5

Observational studies

Details of the included studies and the risk of bias are shown in tables 3 and 4. w27–w33 There were five nested case–control studies, w28 w29 w31–w33 and two cross-sectional studies. w27 w30 Three of the studies were based in the USA, w28–w30 while the other four were in Europe. w27 w29 w31–w33 There was a predominance of females in three studies. Fluticasone and/or budesonide were among the ICS evaluated in all the studies, except for one study that evaluated beclomethasone and triamcinolone. w28 ICS exposure was estimated from dispensing records, and dosages were usually extrapolated from amounts dispensed. Some patients were identified through diagnostic codes for

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Characteristics of observational studies of inhaled corticosteroids (ICS) and fractures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
<td>Design</td>
</tr>
<tr>
<td>Gonnelli, 2010w27</td>
<td>Cross-sectional</td>
</tr>
<tr>
<td>Johannes, 2005w28</td>
<td>Nested CC</td>
</tr>
<tr>
<td>Lee, 2004w29</td>
<td>Nested CC</td>
</tr>
<tr>
<td>McEvoy, 1998w30</td>
<td>Cross-sectional</td>
</tr>
<tr>
<td>Pujades-Rodrı´ guez, 2007w31</td>
<td>Nested CC</td>
</tr>
<tr>
<td>WEUSRTFP1127 Miller, 2010w32 w34</td>
<td>Nested CC Non-vertebral fracture</td>
</tr>
<tr>
<td>WVE113669, 2008w33</td>
<td>Nested CC Non-vertebral</td>
</tr>
</tbody>
</table>

BDP, beclomethasone; BUD, budesonide; CC, case—control; COPD, chronic obstructive pulmonary disease; CXR, chest x-ray; FEV1, forced expiratory volume in the first second of expiration; FLUNIS, flunisolide; FP, fluticasone; FVC, forced vital capacity; GPRD, General Practitioner Research Database; ICD, International Classification of Diseases; TRIAM, triamcinolone; VA, Veterans Affairs.
Table 4: Validity assessment and results of observational studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Ascertainment of outcome</th>
<th>Ascertainment of exposure</th>
<th>Adjustments</th>
<th>Limitations and bias</th>
<th>ICS exposure (BDP equivalents where available)</th>
<th>OR (95% CI)</th>
</tr>
</thead>
</table>
| Gonnelli, 2010[27] | Physicians assessed the lateral CXR using MorphoExpress software | Direct interview of patients and checking of medical records | Age, gender, BMI, and COPD severity | Cross-sectional design limits ability to adjust for confounders, or to establish temporal association. Exposure data from patient interviews are subject to recall bias. | ≤750 µg
750–1500 µg
>1500 µg | 1.26 (0.98 to 1.69)
1.36 (0.93 to 1.72)
1.40 (1.04 to 1.89) |
| Johannes, 2009[28] | ICD-9 codes for non-vertebral fractures, and claims for physician or hospital care | Pharmacy claims for ICS use in the past year prior to fracture | Demographics, medical conditions, medications including oral corticosteroid use, and health utilisation for underlying respiratory disease | No spirometric definition of COPD. Reliance on ICD codes and insurance claims. Relatively few subjects aged >65 years. Lack of adjustment for important confounding variables. Funded by manufacturer of ICS. | 30 days prior vs no current use
90 days prior vs no recent use
1–167 µg
168–504 µg
505–840 µg
> 840 µg | 0.86 (0.59 to 1.25)
1.02 (0.77 to 1.36)
0.88 (0.64 to 1.19)
0.82 (0.54 to 1.26)
1.22 (0.67 to 2.25)
1.05 (0.53 to 2.07) |
| Lee, 2004[29] | ICD-9 codes for non-vertebral fractures. No specific validation for this study | Based on outpatient pharmacy claims database | Co-morbidities, medications, annual hospitalisation and oral corticosteroid use | No spirometric definition of COPD. Reliance on ICD coding, lack of adjustment for potentially important confounders, no lung function data. Funded by manufacturer of ICS. | Current user (last 30 days) vs non current
Recent user (last 90 days) vs non-recent user | 1.20 (0.94 to 1.54)
1.14 (0.95 to 1.37) |
| McEvoy, 1998[30] | Lateral lumbar and thoracic x-rays independently reviewed by blinded radiologists. | Computerised pharmacy records, ICS use ≥4 puffs a day ≥6 months of past year, and no more than 2 brief oral steroid courses. | Smoking history, FEV1, Baseline Dyspnoea Index, Activity Limitation Score and General Health Status Index. | Analysis restricted to male patients >50 years. Cross-sectional design limits the ability to adjust for all confounders. | Any ICS use
≤100 µg
101–200 µg
201–400 µg
401–800 µg
801–1600 µg
>1600 µg | 1.06 (0.88 to 1.28)
0.99 (0.78 to 1.27)
1.17 (0.95–1.44)
1.21 (0.97–1.51)
1.13 (0.87 to 1.46)
1.74 (1.00 to 3.01) |
| Pujades-Rodríguez, 2007[31] | Any fracture recorded in electronic medical records (13% were hip, and 9% were wrist) | ICS exposure based on electronic prescribing records | Age, predicted FEV1, and oral corticosteroid use, and matched for sex and general practice | No spirometric definition of COPD. Reliance on general physician record for diagnosis of COPD and outcome/exposure ascertainment. | Any ICS use | 1.12 (0.97 to 1.29) |
| WEUSRTP1127 Miller, 2010[32] | OxMIS and Read codes for non-vertebral fracture | Based on ICS use in the electronic medical record year prior to index date | COPD hospitalisation, BMI, smoking status, concomitant medication vertebral fractures, co-morbidities | Reliance on electronic medical record coding, lack of adjustment for potentially important confounders, no lung function data. Funded by manufacturer of ICS. | Use in past 12 months vs non-use past year
Current use (13–25 days) vs non-use in past year
Recent use (26–52 days) vs non-use in past year
Medium (750 µg) vs none
High (1500 µg) vs none
Very high (2000 µg) vs none | 1.25 (1.07 to 1.47)
1.10 (0.84 to 1.46)
1.36 (1.04 to 1.77)
1.09 (0.67 to 1.70)
0.92 (0.69 to 1.24)
0.68 (0.22 to 1.86) |
| WWE113669, 2009[33] | OxMIS and Read codes for first non-vertebral fracture | Based on ICS use in the electronic medical record 1 year prior to index date | COPD hospitalisation, BMI, smoking status, concomitant medication vertebral fractures, co-morbidities | No spirometric definition of COPD. Reliance on electronic records, no lung function data. Funding source: manufacturer of ICS. | Current user (last 30 days) vs non-use past year
Recent user (last 31–90 days) vs non-use past year
Low dose vs none
Medium dose vs none
High dose vs none | 1.42 (1.23 to 1.64)
1.35 (1.16 to 1.58)
1.39 (1.16 to 1.66)
1.51 (1.24 to 1.83)
1.32 (1.13 to 1.55) |

BDP, beclomethasone; BMI, body mass index; COPD, chronic obstructive pulmonary disease; CXR, chest x-ray; FEV1, forced expiratory volume in the first second of expiration; ICD, International Classification of Diseases; OxMIS, Oxford Medical Information Systems.
COPD in electronic databases, and the extent of misclassification is unclear. Four studies were funded by manufacturers of ICS.

Findings from the meta-analysis of observational studies according to exposure subcategories are shown in figure 3. The pooled estimate based on all seven studies, covering current or ever users versus non-users, showed an OR of 1.21 (95% CI 1.12 to 1.32; p<0.0001, I²=37%). The meta-analysis based on other ICS category rather than 'fluticasone exposure' yielded a very similar OR of 1.20 (95% CI 1.11 to 1.29).

Exclusion of the study that did not enrol fluticasone or budesonide users did not change the direction or magnitude of the fracture risk for current or ever users (OR 1.21; 95% CI 1.11 to 1.32; p<0.001) in a sensitivity analysis.

One study reported primarily on fluticasone, but provided some data on the category of 'other ICS' exposure involving beclomethasone and budesonide. Meta-analysis based on 'other ICS' category rather than 'fluticasone exposure' yielded a very similar OR of 1.20 (95% CI 1.11 to 1.29).

Dose–response meta-regression
Six observational studies were included in this analysis. Each 500 μg increase in beclomethasone dose equivalents was associated with a 9% increase in the likelihood of fractures, OR 1.09 (95% CI 1.06 to 1.12; p<0.001) (figure 4).

DISCUSSION
Our meta-analysis found consistent evidence on the adverse effects of the available long-term ICS (fluticasone and budesonide) treatment on fractures in patients with COPD. We found a relative increase of >20% in the likelihood of fractures in RCTs and observational studies. Although the pooled estimates from the RCTs are dominated by a single large trial, and the lower bounds of the 95% CIs are very close to unity, the totality of the evidence should be considered. Here, the consistency and similarity of the point estimates across study designs, the absence of statistical heterogeneity and the presence of a dose–response effect in the observational studies strengthen the confidence in this association.

Comparisons with previous analysis
Our consistent findings from trials and observational studies in COPD should be distinguished from previous underpowered meta-analyses limited to published trials, or observational studies which included patients with conditions other than...
COPD. A meta-analysis of ICS in older adults found no consistent risk based on three COPD trials and several observational studies that enrolled patients who did not have COPD. Similarly, another meta-analysis reported no increase in fractures based on published data from three long-term trials. There are also two Cochrane reviews that reported inconclusive findings on the link between ICS and fractures. Another pooled analysis limited to five published case–control studies which included those with other respiratory conditions such as asthma reported a dose-related increased relative fracture risk of 12% per 1000 μg increase in beclomethasone equivalents. In contrast, our comprehensive meta-analysis of clinical trials included unpublished data with sufficient power to reliably detect a relatively precise estimate of the increase in the likelihood of fractures among 17,515 patients with COPD.

The precise mechanisms by which ICS increase the risk of fractures in patients with COPD are uncertain. Patients with COPD are at high risk from osteoporosis and fractures, which may stem from co-morbidity (eg, susceptibility to falls), nutritional deficiencies, inflammatory markers, and prior corticosteroid exposure. A portion of the ICS dose is systemically absorbed and systemic effects are recognised. At large doses, the adverse effects of ICS may come close to that of oral corticosteroids, known to cause increased bone resorption and decreased bone formation in a dose-dependent manner consistent with our dose–response analysis.

Limitations
The lower limit of the 95% CI for fracture risk from RCT data is close to the threshold of the null effect, thus introducing an element of uncertainty. Moreover, the trial data originate mainly from unpublished, non-peer-reviewed company reports. Absence of information in RCTs regarding timing of fracture in relation to ICS use also precludes meta-regression of fracture risk according to exposure duration. Most of the RCTs did not use specific methods to define and record fractures, and it is possible that misclassification or underascertainment occurred, although this should not have a differential effect in a double-blind study. Many trial participants had previous ICS exposure prior to joining the trial, and we noted differential oral corticosteroid exposure in control arms (online table 1), thus attenuating observable differences between groups. While risk estimates from observational data were adjusted for concomitant medications, this was not so for the RCTs, and the extent of bisphosphonate use may affect the fracture risk.

Data on budesonide are available from only two trials, and there are no head to head long-term trials of fluticasone, unisolide, triamcinolone or mometasone as they are not included in unpublished data with sufficient power to reliably detect a relatively precise estimate of the increase in the likelihood of fractures among 17,515 patients with COPD.

Future research
Future studies should evaluate the precise location of the fractures (peripheral vs central, traumatic vs non-traumatic), and whether the risk varies by COPD severity. Studies should attempt to determine whether concomitant bone-protective drugs can ameliorate this risk of fractures associated with ICS, and should recruit a larger proportion of postmenopausal women. The risk of fractures associated with the newer formulations of ICS needs to be assessed. The dose–response relationships for efficacy and safety need detailed evaluation so that the lowest effective dose can be prescribed.

Implications for clinical practice
The relative increase of ~27% in fracture risk should be weighted against the 20–25% relative reduction of COPD exacerbations, with a potential number needed to treat of 6 per year in preventing exacerbations. This contrasts with the fracture NNH of 83 over a 3-year period in the same trial population. Thus, the benefit/harm ratio may be less of a concern for patients with low underlying fracture risk but who have more severe COPD and are experiencing frequent exacerbations. However, as cumulative ICS exposure may be hazardous in older patients with multiple co-morbidities and low BMD, ICS treatment needs more careful consideration, and bone-protective drugs may be warranted.

Conclusions
Our findings suggest a dose-dependent increased risk of fractures associated with the long-term use of inhaled fluticasone or budesonide in patients with COPD. Clinicians should carefully consider the modest risk of fractures associated with ICS treatment, along with their adverse effects on other outcomes and balance this against the symptomatic benefits in reducing exacerbations.

Funding SS is supported by the Johns Hopkins Clinical Research Scholars Program. This publication was made possible by Grant Number 1KL2RR025066-03 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH), and NIH Roadmap for Medical Research. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of the NCRR or NIH. Information on the NCRR is available at http://www.ncrr.nih.gov/. Information on Re-engineering the Clinical Research Enterprise can be obtained from http://nihroadmap.nih.gov/cliclincalresearch/overview-transactional.asp.

Competing interests None.

Contributors YKL and SS conceptualised the review and drew up the protocol. YKL, SS and RC were involved in study selection and data extraction. YKL and RC performed the data analysis. YKL and SS drafted and revised the manuscript.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES
Risk of fractures with inhaled corticosteroids in COPD: systematic review and meta-analysis of randomised controlled trials and observational studies

Yoon K Loke, Rodrigo Cavallazzi and Sonal Singh

Thorax 2011 66: 699-708 originally published online May 20, 2011
doi: 10.1136/thx.2011.160028

Updated information and services can be found at:
http://thorax.bmj.com/content/66/8/699

These include:

Supplementary Material
Supplementary material can be found at:
http://thorax.bmj.com/content/suppl/2011/05/02/thx.2011.160028.DC1

References
This article cites 16 articles, 4 of which you can access for free at:
http://thorax.bmj.com/content/66/8/699#BibL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Drugs: respiratory system (526)
- Clinical trials (epidemiology) (557)
- Internet (104)
- Pneumonia (infectious disease) (579)
- Pneumonia (respiratory medicine) (562)
- TB and other respiratory infections (1273)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/