Additional materials are published online only. To view these files please visit the journal online (http://thorax.bmj.com).

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

Accepted 23 March 2010
Published Online First 29 September 2010

REFERENCES

CORRESPONDENCE

Television viewing and asthma: spurious relationship?

In the April 2009 issue of Thorax, Sherriff and co-authors report on data taken from the ALSpac study, addressing the association between television viewing in early childhood and the development of asthma.1 They found that, after adjustment for body mass index, there was a relationship between the two, showing a significant trend.

I was surprised to see that television viewing was viewed solely as a proxy for a sedentary lifestyle, but not as being associated with other risk factors for developing asthma. For example, although the authors corrected for smoking during pregnancy, they did not include parental smoking at home in their model. It is not unlikely that among parents of children that were reported to have been watching television for longer, many of them were smoking in the presence of their child.

Adjustment for such additional factors is warranted before discussing the consequences of the study findings.

Johannes C van der Wouden
Correspondence to Johannes C van der Wouden, Department of General Practice, Erasmus MC, Room Fi235, PO Box 2040, Rotterdam, CA 3000, The Netherlands; j.vanderwouden@erasmusmc.nl

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

Accepted 21 August 2009
Published Online First 23 August 2010

REFERENCE

Author’s reply

We thank Dr van der Wouden1 for his interest in our paper.2 He raises the question as to whether our observations could be mediated (confounded) or modified by contemporaneous environmental tobacco smoke (ETS) exposure during periods of TV watching.

We did find that parents of children with longer reported TV viewing were more likely to report that the child was exposed to tobacco smoke: 17.4% of children watching no TV at all were exposed to postnatal ETS, 25% of children watching less than 1 h per day, 53.1% of children watching 1–2 h per day and 42.3% of children watching 2 h or more per day (p linear <0.001). However, only 6.4% of children exposed to postnatal ETS reported asthma at 11.5 years compared with 5.9% not exposed (p for difference between proportions 0.62).

Therefore, despite the association of ETS exposure with reported TV viewing, the lack of a strong association of ETS with asthma at 11.5 years in children asymptomatic up to 3.5 years made it unlikely that postnatal ETS had an independent effect on asthma development in this sample.

In our paper, we chose to adjust the final model for prenatal tobacco smoke exposure only. This was chosen because there was a high degree of co-linearity between prenatal and postnatal smoking in this population and prenatal exposure has been reported to be more strongly associated with asthma in several studies (see the recent meta-analysis by Pattenden et al).3 We have previously reported that prenatal exposure is associated with early onset wheezing,4 but that neither prenatal nor postnatal exposure to ETS was associated with later onset or persistent wheezing, more likely to be phenotypes associated with asthma. By excluding children who wheezed at any time before 3.5 years from our study, we think it is likely that we have attenuated any potential effect of early smoke exposure on the outcome. Finally, when we considered reported postnatal ETS as a covariate in our final model along with prenatal exposure, we found no attenuation of the association of TV viewing with asthma.

We also considered the possibility that postnatal ETS may have modified the association of prolonged TV viewing with asthma at 11.5 years, as suggested by the correspon-
syndrome) of whom 1084 (34%) were treated with methylprednisolone while 207 (16%) received no steroid treatment.2 Glucose levels were the same at baseline in both groups but in those treated with steroid the mean value rose significantly. The highest blood glucose in the methylprednisolone group was 9.68 mmol/l (±4.5) compared with 6.59 mmol/l (±3.71) in the non-steroid cohort (p<0.05).2 This change is comparable with the 1.8 mmol/l increase observed with hydrocortisone in a multicentre randomised trial of steroids in sepsis.3 An increase of this magnitude appears trivial, but significantly alters glucose levels within the lung. Airway surface fluid is a key element of pulmonary defence, and glucose is normally maintained 3–20 times lower than plasma levels by active transport mechanisms.4 The latter has a threshold of 6.7–9.7 mmol/l and glucose increases in airway fluid when plasma levels exceed this value. Furthermore, pulmonary inflammation disrupts epithelial integrity and also leads to a rise in lung glucose. Airway surface fluid contains surfactant proteins A and D, which not only are important host defence molecules against a broad spectrum of pathogens but, in addition, possess a number of immunoregulatory properties. These proteins are members of the collectin family, which recognise carbohydrate moieties on microorganisms through their lectin domain. The latter also binds glucose, which may act as a competitive inhibitor of surfactant proteins.5 It is little surprise, therefore, that raised airway fluid glucose promotes pulmonary inflammation and infection.4

Corticosteroids are an important treatment modality in many pulmonary and extrapulmonary diseases. It is likely that in many diseases such as COPD, interstitial lung disease and asthma, modest hyperglycaemia associated with steroid use abrogates the beneficial anti-inflammatory effects of these drugs. Further investigation of this phenomenon is warranted not only in COPD, but also in other pulmonary diseases in which steroids are commonly used.

Matt P Wise, Anthony P Brooks, Megan H Purcell-Jones
University Hospital of Wales, Cardiff, UK

Correspondence to Dr Matt P Wise, Adult Critical Care, University Hospital of Wales, Cardiff CF1 4XW, UK, matthewwise@doctors.org.uk

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 15 December 2009
Published Online First 7 June 2010

REFERENCES

Authors’ response

We thank Dr Wise and colleagues1 for their thoughtful response to our work in chronic obstructive pulmonary disease patients with uncomplicated hypercapnic respiratory failure.2 We believe that modest hyperglycaemia is a useful way of identifying patients at greatest risk of treatment failure with non-invasive ventilation, but we are more cautious than those correspondents in implicating corticosteroid use either acute or chronic as a major aetiological factor. Our study was clearly underpowered to exclude such an association but we did not see any trend towards a worse outcome in relationship to previous oral corticosteroid use. The issues reported in the patients with severe acute respiratory syndrome taking methylprednisolone are less likely to apply in our patients in whom the dose of systemic corticosteroids used to treat chronic obstructive pulmonary disease exacerbations is significantly lower than in the severe acute respiratory syndrome study or than, that reported in the USA.3 4 Previous use of inhaled corticosteroids can be associated with clinically diagnosed pneumonia, but hyperglycaemia was not an issue in that large trial nor is pneumonia incidence always increased by inhaled steroid use.5 6 The mechanisms suggested by which hyperglycaemia promotes lung infection are plausible but will be difficult to test in humans. Disappointingly, recent data suggest that tightly controlling hyperglycaemia in an intensive care unit setting is associated with worse rather than better outcomes, which support our view that this may be a marker of disease severity rather than a causal factor leading to a worse outcome.7

Biswajit Chakrabarti,1 Robert M Angus,2 Peter M A Calverley1
1Clinical Sciences Centre, University Hospital Aintree, University of Liverpool, Liverpool, UK; 2Aintree Chest Centre, University Hospital Aintree, Liverpool, UK

Correspondence to Biswajit Chakrabarti, Aintree Chest Centre, University Hospital Aintree, Lower Lane, Liverpool L9 7AL, UK; biz@doctors.org.uk

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 24 August 2010
Published Online First 26 October 2010

REFERENCES

Pneumocystis jirovecii in pleural infection: a nucleic acid amplification study

Pleural infection is associated with 20% mortality in the 80 000 new cases per year in the UK and USA. Streplococcus species cause ~50% of community-acquired bacterial pleural infection.1 Staphylococcus aureus and anaerobes are isolated in 8% and 20% of cases, respectively, and 12% of pleural infections yield polymicrobial cultures. However, even using culture and nucleic acid amplification techniques (NAATs), 26% of cases remain microbiologically obscure.

The low rate of positive microbiology may be due to previous antibiotic treatment, varying pathogen prevalence in different pleural fluid locules (already known to vary biochemically8) or the presence of organisms that are difficult to detect using conventional techniques. One such possible organism is Pneumocystis jirovecii, which requires specialist diagnostic techniques (eg, Grocott–Gomori methenamine silver staining or NAATs). P jirovecii has been identified in sputum and bronchoalveolar lavage (BAL) fluid from both immunocompromised and immuno-competent individuals—it has been isolated from BAL fluid using NAATs in 15% of patients with lung disease without HIV

Pneumocystis jirovecii in pleural infection: a nucleic acid amplification study

Pleural infection is associated with 20% mortality in the 80 000 new cases per year in the UK and USA. Streplococcus species cause ~50% of community-acquired bacterial pleural infection.1 Staphylococcus aureus and anaerobes are isolated in 8% and 20% of cases, respectively, and 12% of pleural infections yield polymicrobial cultures. However, even using culture and nucleic acid amplification techniques (NAATs), 26% of cases remain microbiologically obscure.

The low rate of positive microbiology may be due to previous antibiotic treatment, varying pathogen prevalence in different pleural fluid locules (already known to vary biochemically8) or the presence of organisms that are difficult to detect using conventional techniques. One such possible organism is Pneumocystis jirovecii, which requires specialist diagnostic techniques (eg, Grocott–Gomori methenamine silver staining or NAATs). P jirovecii has been identified in sputum and bronchoalveolar lavage (BAL) fluid from both immunocompromised and immuno-competent individuals—it has been isolated from BAL fluid using NAATs in 15% of patients with lung disease without HIV

Pneumocystis jirovecii in pleural infection: a nucleic acid amplification study

Pleural infection is associated with 20% mortality in the 80 000 new cases per year in the UK and USA. Streplococcus species cause ~50% of community-acquired bacterial pleural infection.1 Staphylococcus aureus and anaerobes are isolated in 8% and 20% of cases, respectively, and 12% of pleural infections yield polymicrobial cultures. However, even using culture and nucleic acid amplification techniques (NAATs), 26% of cases remain microbiologically obscure.

The low rate of positive microbiology may be due to previous antibiotic treatment, varying pathogen prevalence in different pleural fluid locules (already known to vary biochemically8) or the presence of organisms that are difficult to detect using conventional techniques. One such possible organism is Pneumocystis jirovecii, which requires specialist diagnostic techniques (eg, Grocott–Gomori methenamine silver staining or NAATs). P jirovecii has been identified in sputum and bronchoalveolar lavage (BAL) fluid from both immunocompromised and immuno-competent individuals—it has been isolated from BAL fluid using NAATs in 15% of patients with lung disease without HIV
Steroid-induced hyperglycaemia and pulmonary disease

Matt P Wise, Anthony P Brooks and Megan H Purcell-Jones

Thorax 2011 66: 449 originally published online June 7, 2010
doi: 10.1136/thx.2009.132076

Updated information and services can be found at:
http://thorax.bmj.com/content/66/5/449.3

These include:

References
This article cites 5 articles, 2 of which you can access for free at:
http://thorax.bmj.com/content/66/5/449.3#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/