without a huge expansion of critical care beds that could not be justified without evidence of benefit to patients. It should be noted that most of the studies reported by Dr Challen failed to exclude patients with do not attempt resuscitation orders or with directives not to be admitted to the ICU. Therefore, these percentages and the pooled performance characteristics do not necessarily reflect their ‘real life’ clinical utility.

Expanding on Dr Challen’s statement that application of these tools ‘should be with caution’, we would suggest that severity scores should only be used to predict outcomes for which they have been validated and, as suggested by McGinn, scoring systems should have their impact assessed in clinical studies before being applied to guide clinical decisions.

James D Chalmers, Aran Singanayagam, Adam T Hill
Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
Correspondence to Dr James D Chalmers, Royal Infirmary of Edinburgh, Department of Respiratory Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK; jamesdchalmers@googlemail.com

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 24 November 2010

Public Online First 21 December 2010

doi:10.1136/thx.2010.156554

REFERENCES


Exit of leucocytes across the alveolar epithelium worsens lung injury

Persson and Uller are to be commended for their review highlighting the important role of leucocyte egression in the resolution of airway inflammation.7 They go on to speculate that egression across the alveolar epithelium may be detrimental, because, unlike for the airways, there is no mucociliary escalator, and luminal cells that are not removed will interfere with gas exchange. They allay this concern citing work from Cory et al using a mouse model of asthma. In this model a deficiency of matrix metalloproteinase (MMP)-2 and/or MMP-9 inhibits leucocyte egression across the airway epithelium and leucocytes accumulate in the interstitium around the bronchial wall. The MMP-2/MMP-9 knock-out (KO) mice died from asphyxia (presumably from bronchoconstriction). The wild type (WT) mice survive with less peri bronchovascular inflammation, but more mild diffuse alveolar inflammation than the KOs.2

Persson and Uller present this as evidence that egression into the alveolar airspace, as for the airway lumen, may also be beneficial. But it would be dangerous to extrapolate this to other inflammatory diseases for two reasons. First, the leucocytes may have reached the alveolar space not by crossing the alveolar epithelium, but from overspill of the exuberant egression into the airway lumen. Second, in the asthma model described death is by bronchoconstriction and modest alveolar inflammation may be tolerated. In addition, the hazards of egression have been convincingly demonstrated in a murine model in which bleomycin inhalation is used to induce alveolar (rather than airway) inflammation.3

Li and colleagues found that MMP-7 deficiency was protective against death following bleomycin lung injury. They went on to show, very elegantly, that MMP-7 is required to establish the chemotactant gradient that drives leucocyte egression across the alveolar wall.3 The protective effect of the MMP-KO was reversed when n-formyl-nle-leu-phe (nFNLP) was instilled with bleomycin, and egression of leucocytes into the alveolar space was re-established.3

There is still much to be learnt about egression, and in particular the complex regulation and interplay of extravasation and egression in inflammation and resolution of disease. Our own research examines the molecular differences involved in egression across distinct epithelial barriers (alveolar vs bronchial), with a view to enhance the transepithelial exit of leucocytes across the bronchial epithelium (beneficial) while limiting their exit across the alveolar epithelium (detrimental).2 The ability to differentially alter the exit of leucocytes across distinct epithelial barriers may be essential when designing drugs and biological compounds to enhance the resolution of inflammation.

Joanna C Porter
Correspondence to Dr Joanna C Porter, University College London, London, UK; joannaporter@ucl.ac.uk

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 17 December 2010

doi:10.1136/thx.2010.157065

Authors’ response

We obviously agree with Porter1 on the need to make a distinction between egression of infiltrated leucocytes across mucosal epithelia, where a swift further elimination of the lumen cells can be expected to occur (nasal, tracheobronchial, gut, bladder), and the bronchial–alveolar epithelial linings where there is a risk of undesirable accumulation of lumen cells. We repeat this cautionary note in an extended review on resolution of cell-mediated respiratory diseases where we discuss a role of egression in the elimination not only of granulocytes and lymphocytes but also of mast cells and dendritic cells.2 We further discuss how egression of leucocytes through egression can be compatible with the use of sputum cell counts to adjust treatment in asthma.1 The concept developed in our two reviews is underpinned foremost by clinical observations and experimental findings in patients. We were indeed surprised to find that numerous, human, so far little understood, in vivo data supported the resolving role of transepithelial egression whereas little support for the role of leucocyte apoptosis, the accepted paradigm, emerged. However, Porter’s comments mainly concern mouse model findings. Of interest are supporting findings in murine (mouse and rat) models of ‘asthma’ indicating that inhibition of egression can have serious respiratory consequences. We are aware of severe limitations of mouse models3 but felt that these data should be discussed. We also speculated that cell traffic in mouse airways, better than cell activation, could be relevant. However, the distinction between bronchial and
Exit of leucocytes across the alveolar epithelium worsens lung injury

Joanna C Porter

Thorax 2011 66: 1095 originally published online April 20, 2011
doi: 10.1136/thx.2010.157065

Updated information and services can be found at:
http://thorax.bmj.com/content/66/12/1095.1

These include:

References
This article cites 4 articles, 3 of which you can access for free at:
http://thorax.bmj.com/content/66/12/1095.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/