Will recording of lung function fluctuation open the door to internet-guided treatment of asthma?

Maciej Kupczyk,* Sven-Erik Dahlén

Asthma is a heterogeneous and variable chronic disease. Although it is very common, affecting more than 5% of adults and 10% of children in most parts of the world, asthma remains a great challenge both with respect to proper diagnosis and the means proactively to adjust treatment in a disease that is characterised by periods of worsening and remissions. The diagnostic difficulties are mirrored in the complex definition of asthma which comprises four domains: airway obstruction, symptoms, airway inflammation and airway hyper-responsiveness.1 None of these domains alone is sufficient for diagnosis but together they describe the clinical and pathophysiological face of the syndrome of asthma. Nowadays it is widely accepted that the main goal of asthma treatment is to reach and maintain good control of the disease and, in particular, to prevent and limit periods of flare-ups. In order to improve treatment there is a great need to provide the doctor with a better objective understanding of the level of disease control over time during the patient’s daily activities rather than only judging from history and examinations at a visit to the clinic. There is also a desire to find ways to give patients more effective support for self-management, as asthma is a disease where environmental triggers and lifestyle factors play a significant part. Taken together, asthma is the perfect case for internet-governed personalised medicine. It remains, however, to implement this vision because sufficiently sensitive and specific measures have not been established.

In previous editions of the Global Initiative for Asthma (GINA) recommendations for asthma treatment, strong emphasis was placed on lung function measurement. Recording of forced expiratory volume in 1 s (FEV1) and peak expiratory flow (PEF) provides an objective day-to-day measure of airway obstruction and is one of the most common physiological variables reported in clinical practice and asthma trials.2 However, there is an inconsistent relationship between lung function measurements and symptoms or exacerbation frequency as patient-centred outcome measures,3 and the use of daily PEF recordings has generally not lived up to its promise. In fact, in clinical studies there is quite a weak correlation between clinical variables, physiological biomarkers, lung function, number of exacerbations and level of asthma treatment.2 In real-life practice the level of asthma control is still most often judged by a ‘global physician assessment’.2 Although this approach seems to be intuitively valid, it is very difficult to standardise and useless to help the patient with feedback for self-management. More recent recommendations of GINA1 list many variables (daytime symptoms, limitation of activities, nocturnal awakenings, need for rescue treatment, lung function and the number of exacerbations) that should be taken into account when defining disease control. Inherent to this proposal is that observation over longer time periods is necessary for proper assessment of asthma control. Use of day and night symptoms and rescue medication should be based on at least 1 week of observation, and the number of exacerbations needs to be recorded during 1 year of follow-up.1

Accordingly, recordings of variation in lung function over a longer period of time may provide more valid information than a single static measurement of lung function. Previous simplified approaches introduced a reference level for the patient’s ‘personal best’ (recorded over at least 2 weeks of optimal treatment and good control of the disease) that could be used to calculate ‘in-between day variability’ in lung function. The research group led by Frey in Basel, Switzerland has, however, in recent years taken the dynamic analysis of lung function data much further by the introduction of advanced biostatistics and mathematical modelling. For example, they found that the time series of PEF show long-range correlations that change significantly with disease severity and can be used to predict exacerbations and unstable airway function.4

In this issue of Thorax Thamrin et al5 report on associations between fluctuations in lung function and asthma control in two asthma cohorts with different severity of disease. They take advantage of a new and interesting mathematical tool—detrended fluctuation analysis—to evaluate the hypothesis that a past history of fluctuations in lung function provides additional information for the assessment of asthma control. It has been found that , a variable representing the strength of correlation with past lung function and asthma stability, and PEF, both evaluated over 6 months of follow-up, were significantly associated with the GINA-defined level of control. However, was related to whether or not exacerbations occurred in mild to moderate asthma whereas PEF seemed to be more predictive of exacerbations in the cohort with severe asthma. The authors conclude that fluctuation analysis may provide further insight into the future risk of an individual patient having exacerbations of the disease. Incorporation into asthma self-management plans of such measurements with greater probability to predict worsening may thus help to optimise the level of asthma control and therefore improve the quality of healthcare.

The findings in the present report confirm and extend the message in previous studies from this group—namely, that time series analysis of PEF provides more predictive information.4 Furthermore, in another paper by Thamrin et al6 it has even been suggested that calculation of individual conditional probabilities based on PEF data from only 64 days of observation makes it possible to determine the future risk of clinically-defined exacerbations in patients with asthma. The novel method of analysing fluctuations in lung function clearly holds the promise to be an important step towards better phenotyping of asthma at a population level, and has the potential to be applied to personalised medicine at the patient level. It can be hypothesised that the
quantitative approach proposed by Frey and coworkers may be extended and
applied also to fluctuations of clinical
symptoms, biomarkers, medication use and
other endpoints used to monitor asthma.

Before lung function history indices can be
implemented in our everyday clinical
practice, more studies are required to
improve the understanding of this new
tool. For example, can the same measures of
lung function history be applied to patients
with asthma of different severity? The
present study by Thamrin et al\(^3\) represents
the first approach to this issue and, as
mentioned, the data suggest that different
indices may be needed in severe asthma
than in mild to moderate asthma. However,
the present study does not allow us to draw
final conclusions on this issue. The studies
of mild to moderate and severe asthma
were made on two sets of data originating
from two very different studies performed
about 10 years apart and, as the authors
point out, one limitation with the older
study was that it did not use electronic
diaries. Different inclusion criteria,
different settings and a different course of
the two trials also make the direct
comparability studies in well-pheno-
typed and coherent cohorts of patients
with asthma of different severity and
identical study protocols. It would be an
added benefit if several biomarkers were
determined repeatedly over a long time
period in parallel with lung function data,
symptoms and medication use. This would
allow similar calculations of the history of
biomarkers, symptoms and other
outcomes, possibly adding information
about the pathophysiology of asthma.

Considered together, the study of
Thamrin et al\(^3\) raises excitement of future
improvements both in clinical practice
and mechanistic research. It seems that
fluctuation analysis of data from handheld
electronic spirometers should be a valuable
new application to add to smartphones.
This would make it possible to assess the
value of lung function history measures-
ments in research and also in ordinary
clinical follow-up. For research, lung
function fluctuation analysis may repre-
sent an important new key variable
which, when integrated with other
clinical and biological (genomic, tran-
scriptomic, proteomic and metabolomic)
data, may allow for better classification
and phenotyping of asthma by the use of
mathematical modelling in a systems
biology approach.\(^5\) Such a better under-
standing of the pathology of asthma—
especially of severe, poorly-controlled or
difficult-to-treat cases\(^5\)—may facilitate
development of new diagnostic methods
and improve asthma care. Moreover,
identification of key nodes in the complex
network of inflammatory processes
underlying asthma may result in discovery
of new targets for effective therapeutic
intervention.

Competing interests None

The challenges of quality improvement reports and the urgent need for more of them

Kieran McIntyre,\(^1,2\) Kaveh G Shojania\(^2,3\)

Healthcare quality has received sustained
attention since the release of *To Err is
Human* by the US Institute of Medicine in
late 1999.\(^1\) This report captured wide-
spread interest with the oft-quoted esti-
mate that medical errors annually cause
44 000—95 000 deaths in US hospitals
alone. This period also coincided with
publication of ‘An organisation with a
memory’,\(^2\) which described the scale and
nature of serious failures in the UK
National Health Service.

A widely accepted definition describes
quality as the degree to which health
services for individuals and populations
increase the likelihood of desired health
outcomes and are consistent with current
professional knowledge.\(^3,4\) This definition
further characterised quality in terms of
six dimensions: safety, effectiveness,
patient centeredness, timeliness, efficiency
and equity.

Numerous studies document major
shortcomings in each of these dimensions
across a range of clinical settings.\(^5\) One
illustrative study\(^5\) showed that only 55% of
Americans with chronic medical condi-
tions received basic aspects of acute,
chronic and preventive care.\(^5\) For example,
only 50% of patients with asthma received
chronic inhaled corticosteroids and a simi-
larly low percentage of patients with
chronic obstructive pulmonary disease
(COPD) received influenza vaccination.
These major shortfalls in effective health-
care do not simply reflect access issues, as
comparable data from Canada (with
universal public healthcare) show that only

REFERENCES

1. Global Initiative for Asthma. Global Strategy
 for Asthma Management and Prevention, 2008.

2. Reddel HK, Taylor DR, Bateman ED, et al. An official
 American Thoracic Society/European Respiratory
 Society statement: asthma control and
 exacerbations: standardizing endpoints for clinical
 asthma trials and clinical practice. Am J Respir Crit

 definition of asthma severity, control and
 exacerbations: document presented for the World
 Health Organization Consultation on Severe Asthma.

 severe asthma episodes predicted from fluctuation

 between fluctuations in lung function and asthma
 control in two populations with differing

 future risk of asthma exacerbations using individual
 conditional probabilities. J Allergy Clin Immunol

 integrative systems biology approach to
 understanding pulmonary diseases. Chest
 2010;137:1410–16.

8. Anon. The ENFUMOSA cross-sectional European
 multicentre study of the clinical phenotype of chronic
 severe asthma. European Network for Understanding
 Mechanisms of Severe Asthma. Eur Respir J
Will recording of lung function fluctuation open the door to internet-guided treatment of asthma?

Maciej Kupczyk and Sven-Erik Dahlén

Thorax 2011 66: 1019-1020 originally published online August 19, 2011
doi: 10.1136/thoraxjnl-2011-200847

Updated information and services can be found at:
http://thorax.bmj.com/content/66/12/1019

These include:

References
This article cites 7 articles, 2 of which you can access for free at:
http://thorax.bmj.com/content/66/12/1019#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Asthma (1782)
- Child health (843)
- Airway biology (1100)
- Cystic fibrosis (525)
- Inflammation (1020)
- Lung function (773)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/