those unregistered with GPs and those in anomalous positions—such as asylum seekers—will remain and will require alternative initiatives. Are sticks necessary as well as carrots—as in The Netherlands which links residency permits with TB screening? The autonomy of the individual in decisions about their own healthcare is fundamental in the UK and many other countries. The rights of those who actually have infectious TB which is a risk to others are, though, already constrained in the UK both by Act of Parliament (Public Health Act 1994) and potentially by decisions of the Courts. An extension of these limitations to those who merely might have active TB or who might get it in future would be a very hot political issue. TB, though, is already a hot political issue, and a rational, informed and wide-ranging debate is overdue. The present system is not adequate, and the ‘status quo’ is no longer a sensible or scientific position, but merely x-raying all potential immigrants would be worse. Answers as to the utility, yield and cost of various screening strategies should be readily obtainable at little additional cost because of the heterogeneity of what actually is being done across England and Wales, in both primary and secondary care, and sometimes across the interface between the two.

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

REFERENCES

Live and let die: is neutrophil apoptosis defective in severe asthma?

Helen Parfrey, Neda Farahi, Linsey Porter, Edwin R Chilvers

Respiratory Medicine Division, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, CUH NHS Foundation Trust, Cambridge, UK

Correspondence to Professor Edwin Chilvers, Respiratory Medicine Division, Department of Medicine, University of Cambridge School of Clinical Medicine, Box 157, Level 5, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; erc24@cam.ac.uk

Patients with severe asthma make up a relatively small proportion of the total population of patients with asthma yet account for a disproportional amount of asthma-related morbidity and healthcare utilisation.1 2 These patients are usually highly symptomatic, difficult to treat and can be extremely refractory to current treatments. As a consequence, understanding the mechanisms underlying this particular form of asthma is of paramount importance.

Morphological examination of the asthmatic airway reveals epithelial desquamation, thickening of the reticular basement membrane, mucus gland hyperplasia, goblet cell differentiation, angiogenesis and smooth muscle hypertrophy.3 In addition to these structural changes, an inflammatory cell infiltrate is evident within the airways comprising eosinophils, mast cells, lymphocytes and neutrophils. While eosinophils are the most characteristic inflammatory cell type present in mild to moderate asthma, the neutrophil seems to take centre stage more often in patients with severe disease. In fact, the neutrophil is one of the earliest inflammatory cells recruited to the airways following allergen exposure and is particularly evident in bronchoalveolar lavage samples and bronchial and transbronchial biopsies from patients with
corticosteroid-resistant asthma, occupational asthma and fatal asthma as well as those with acute exacerbations. Furthermore, measures of asthma severity such as forced expiratory volume in 1 s correlate directly with the number of neutrophils present in the sputum and bronchial wall. There is also evidence of neutrophil activation and impaired function in the asthmatic airway,9 10 Moreover, neutrophil elastase is recognised to be highly histotoxic and results in epithelial and eosinophil activation, increased vascular permeability and promotion of transforming growth factor-β release which is linked to airways remodelling.

Given the propensity of neutrophils to die quite readily by ‘constitutive’ (ie, inbuilt time-dependent) apoptosis when studied in vitro,11 one major puzzle in airways research has been to determine how and why neutrophils persist in such large numbers in the asthmatic airway. It is also uncertain why some patients with severe asthma have an inflammatory response dominated by neutrophils while others have an eosinophil-dominated pattern of disease. Explanations include genetic and epigenetic diversity, unrecognised environmental effects such as occult occupational exposures or viral infection, and inherited or acquired differences in responses to treatment, in particular sensitivity to glucocorticosteroids. Intriguingly, human biopay studies support the concept that inhaled corticosteroids, while highly effective in reducing eosinophilic inflammation in the airways, may be associated (perhaps causally) with a rebound increase in the number of airway neutrophils.12

For neutrophils to accumulate within the lung, an orderly procession of cell/endothelial interaction, transcellular or pericellular transmigration and some degree of enhanced survival or defective egress is required. Based on sputum analysis, the principal signal coordinating neutrophil influx in severe asthma appears to be the cysteine-X-cysteine (CXC) chemokine interleukin 8 (IL-8; cysteine-X-cysteine chemokine ligand, CXCL),13 with additional contributions from IL-17,14 leukotriene B4 (LTB4), anaphylatoxins, growth-related oncogene a (GRO-a, CXCL1) and epithelial activating peptide 78 (ENA-78, CXCL5).15

Neutrophils access the lung parenchyma via pulmonary capillaries, a process which is strongly influenced by exposure of these cells to systemic priming agents that influence the size, shape, deformability and hence pulmonary transit time of this cell. In contrast, granulocytes arriving in the airway wall exit via the bronchial circula-

tion at a post-capillary level and migrate via a classic ‘rolling-tethering’ paradigm involving (1) P-selectin glycoprotein ligand-1, E-selectin ligand-1 and L-selectin mediated rolling; (2) chemokine-mediated cell activation; and (3) β2-integrin-dependent adhesion and diapedesis where granulocytes move into tissues.16 As noted, a significant proportion of neutrophils cross the endothelial barrier by endocytosis, an active RhoG-dependent engulfment process, prior to negotiating the pericyte sheath and passing through ‘pre-perforated’ regions of the basement membrane.17 The migration of neutrophils into the airway wall may facilitate the subsequent ingress of eosinophils.18

Once recruited into the airway, the neutrophil is left with a limited number of options which include transepithelial migration into the airway lumen, a process which some authors have suggested may represent a regulated and active disposal route for airway granulocytes19; migration back into the circulation (either directly or indirectly via lymphatics); transdifferentiation into macrophage cells20; cell death; or sustained residence. Neutrophil apoptosis (in contrast to necrosis) results in recognition and engulfment by macrophages, which is rapid and in itself promotes the resolution of inflammation and the restoration of normal tissue architecture.21 The removal of neutrophils in this way serves to prevent the release of cytotoxic contents and thus protect host tissues. The precise timing and magnitude of neutrophil apoptosis in the asthmatic airway has been difficult to determine in vivo but offers a plausible exit strategy for these cells and one that has been observed in a number of other conditions characterised by airway neutrophilia. Consequently, factors that prolong the neutrophil lifespan by blocking apoptosis or impairs the clearance of apoptotic cells may be detrimental to this process and contribute towards the intense neutrophilic inflammation observed. Indeed, in the case of the eosinophil, it has been extremely difficult to identify any evidence of apoptosis within the microenvironment of the airway wall, despite the fact that these cells undergo apoptosis readily once they escape into the airway lumen.22

Unsurprisingly, neutrophil apoptosis turns out to be a highly regulated process. Recognised ‘survival factors’ include lipopolysaccharide, granulocyte-macrophage colony-stimulating factor, type I and II interferons, survivin and, rather surprisingly, hypoxia and glucocorticosteroids.23–26 With regard to
context of severe asthma. Identifying the neutrophil survival factor(s) present in this patient group is clearly an important next step and, if targetable, may form the basis of a new therapeutic approach for this difficult-to-treat patient group.

While this study provides further evidence that neutrophil apoptosis may be deregulated in severe asthma, a number of key questions remain. We need to understand the dynamics of cell migration into and out of the airway wall and determine the true residency times and the relative contribution of apoptosis and, indeed, other non-apoptotic death mechanisms such as autophagy, NETosis25 and cytolysis in granulocyte clearance. We also need to understand the signals that block apoptosis in the airway wall (yet seemingly not in the airway lumen) and to determine what drives the switch from eosinophil- to neutrophil-dominant inflammation. Drugs which target the removal rather than the arrival of granulocytes in tissues are now emerging,29 and such agents may offer an important adjunct to current asthma treatments.

Funding MRC, Wellcome Trust, Asthma UK, BBSRC, NIHR Cambridge Biomedical Research Centre.

Competing interests None.

Provenance and peer review Commissioned; not externally peer reviewed.

REFERENCES

British Thoracic Society Pleural Disease Guidelines - 2010 update

Nick Maskell, on behalf of the British Thoracic Society Pleural Disease Guideline Group

INTRODUCTION

Pleural disease remains common, affecting over 3000 people per million population each year. It therefore presents a significant contribution to the workload of respiratory physicians. These guidelines attempt to summarise the available evidence to aid the healthcare professional in delivering good quality patient care.

AIMS AND OBJECTIVES OF THE GUIDELINE

Since the last BTS pleural disease guidelines were published in 20033 a large number of good quality primary research papers have been published and the guidelines need to reflect this new data. In addition, there was a need to develop new sections on local anaesthetic (LA) thoracoscopy and thoracic ultrasound to reflect changes in clinical practice.

Live and let die: is neutrophil apoptosis defective in severe asthma?

Helen Parfrey, Neda Farahi, Linsey Porter and Edwin R Chilvers

Thorax 2010 65: 665-667
doi: 10.1136/thx.2009.134270

Updated information and services can be found at:
http://thorax.bmj.com/content/65/8/665

These include:

References
This article cites 29 articles, 11 of which you can access for free at:
http://thorax.bmj.com/content/65/8/665#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/