Rethinking TB screening: politics, practicalities and the press

J Moore-Gillon, Peter D O Davies, L Peter Ormerod

INTRODUCTION

Worldwide, tuberculosis (TB) causes 1.3 million deaths each year, and there are at least 9.27 million new cases annually.\(^1\) Global population mobility on a scale never seen before means that the UK, along with many other countries with a previously low incidence of the disease, has over the last two decades seen a sharp rise in TB. Indeed most doctors are probably more likely to see a case of TB in the next year than at any other time in their professional lives. In the UK, there are now in excess of 8400 new cases per annum, >70% of them occurring in individuals born outside the country,\(^2\) and the picture is similar in the USA, where over half of all cases occur in those born abroad.\(^3\) The annual UK rate of TB for those born abroad (87/100 000) is >20 times higher than that for the UK-born population (including UK-born members of ethnic minority groups). For the Black African population in the UK who were born outside this country the rate (at 509/100 000) is 75 times higher than in the UK-born population generally, reflecting the very high TB rates associated with HIV co-infection in sub-Saharan Africa.\(^2\)

Clearly, current methods of TB screening for new entrants, largely for active TB only, are not working, and debate about how they might be improved has spread beyond health professionals to become the focus of media comment, often hostile, and the subject of political attention and debate.\(^4\) We discuss the limitations of current UK screening methods, suggest that the natural history of infection with the TB bacterium means that they cannot succeed and consider alternative approaches.

THE PRESENT SITUATION

Since 1971 the UK has had a mechanism (the Port of Arrival Scheme) aimed at screening immigrants from countries with an annual TB incidence >40/100 000 and who plan to stay for ≥6 months. Some individuals are offered a chest x-ray at the airport, but the criteria by which these are selected are not clearly defined, most x-rays being carried out on asymptomatic individuals. All others should be referred onto a local chest clinic for assessment, but there is often either no local system to capture them or if do not go to their declared ‘intended district of residence’ they are lost to potential TB screening. Other countries—for instance Norway and The Netherlands—have a stricter (just 3 months) residency criterion for screening, and appear much more successful in encouraging attendance—in the case of The Netherlands perhaps because a residency permit is only issued after screening has occurred.\(^5\) In the UK, another problem is that the system is triggered by migration status and not just by TB risk: a long-standing resident in a very high incidence country may have a high TB risk, but if not subject to immigration controls (perhaps as a British passport holder) then the Port of Arrival system is not implemented. Additionally, those seeking asylum are subject to screening under a different system: if asylum is claimed after arrival, and TB screening has not yet taken place, they may not be caught in the net at all. Neither, self-evidently, will be illegal immigrants.

THE LIMITATIONS OF SCREENING

Crucial to an understanding of what screening can, and cannot, achieve is an awareness of the distinction between the state of being ill with active TB disease, and that of asymptomatic latent TB infection. Those 8400+ reported annual UK cases were of active disease, but it is estimated that one-third of the earth’s population—about 2 billion people—have latent TB infection.\(^1\) This third would include a high proportion of the over 65s born in the UK (and probably many healthcare workers). Identification of the infected state may be important, because roughly 1 in 10 of these currently healthy but infected individuals will progress to active TB disease in their lifetime, with the greatest risk in the first 5 years after initial TB infection,\(^6\) but active TB can develop years and even decades after. They therefore are a risk to themselves and potentially to others in their lifetime. Chest x-rays on arrival for migrants only detect active respiratory TB, and will miss non-respiratory TB (the sites of disease in 44% of new arrivals).\(^7\) Chest x-rays also do not detect latent infection, the source of most cases of TB in recent migrants.

We fear this misconception about the effectiveness of chest x-rays, often expressed in the press, may be shared by some senior politicians. In fact, in 2007, ~80% of the 5300 or so cases of active TB occurring in those born outside the UK developed 2 years or more after their first arrival.\(^8\) In the USA, half of those cases occurring in the foreign-born were detected ≥5 years after their arrival.\(^9\) The proportion of individuals who will actually have active pulmonary disease, detectable on chest x-ray, coincident with their time of arrival in their destination country is very small indeed.\(^9\) This is reflected in the extremely low pick-up of active TB by x-ray screening at UK airports, and the practical difficulties of performing x-rays on large numbers in a very short time are great. In 2004, ~280 000 individuals subject to immigration control and planning to stay >6 months arrived in the UK from high TB incidence countries. Only a quarter (70 000) had chest x-rays, and only ~100 cases of pulmonary TB were found. In contrast, probably 100 000 of those arrivals had latent TB infection, with the likelihood that at least 10 000 of them will develop active TB at some future date. The conclusion of the Health Protection Agency, which reviewed these findings and the earlier literature, was that ‘There is little if any evidence to support the continuation of chest x-rays at the Port of Entry as a screening method.’\(^9\)

Does moving the place of the chest x-ray to the country of origin have anything to offer? Australia, Canada and the USA have such policies for those planning a stay of >6 months, but Canada is selective about the countries of origin upon which it imposes that policy. Australia may ask for a chest x-ray for those planning stays <6 months if the

\(^{1}\)Department of Respiratory Medicine, St Bartholomew’s and Royal London Hospitals London, UK; \(^{2}\)Department of Respiratory Medicine, Cardiothoracic Centre, Liverpool, UK; \(^{3}\)Department of Respiratory Medicine, Royal Blackburn Hospital, Lancashire, UK

Correspondence to Professor L Peter Ormerod, Royal Blackburn Hospital, Blackburn, Lancs BB2 3HH, UK; lawrence.ormerod@elht.nhs.uk

Thorax August 2010 Vol 65 No 8 663
visitor is from a particularly high incidence country. The Home Office, responsible for immigration policies in the UK, has run a trial of x-ray screening in four countries: Tanzania, Sudan, Thailand and Bangladesh. Under this scheme, aspirtant migrants to the UK underwent chest x-ray, followed by sputum testing if abnormal. Those with sputum smear-positive (and therefore potentially infectious) TB had to be treated for TB, for a period of 6 months, before reapplying. An initial evaluation of the system suggested that such individuals comprised well under 0.1% of those undergoing x-ray, consistent with the yield of chest x-ray screening elsewhere. The effectiveness (and cost-effectiveness) of such screening must be questioned, particularly in the light of the discussions set out above. Further, the oft-cited argument that it is infectious pulmonary TB which is of paramount importance might be strictly correct from the public health perspective, but is of little comfort to the large number of patients who later develop spinal, gut, renal or cerebral TB. From the health economic point of view in the destination country it is a weaker argument still: it is the latter cases, not pulmonary disease, which are more difficult to diagnose and more expensive to manage.

In summary, the very great majority of TB cases which occur amongst migrants from abroad will not be detected by chest x-ray immediately prior to, or at the time of, arrival. Although it is impossible to determine precise proportions, it is almost certain that most cases of TB in immigrants represent reactivation of latent TB infection acquired abroad, with some contribution from spread of active disease between members of immigrant groups after arrival in their destination country. There is also evidence that revisits to the country of origin may be a source of infection leading to disease.

IS THERE A BETTER WAY?

The ideal screening process would achieve three aims. First, it would identify the small number with active TB disease; they are in need of treatment both for their own benefit and because some may be infectious to others. Secondly, it would identify those with latent TB infection. In these, intervention with drug treatment would substantially reduce, but not remove completely, the risk of later progression to active TB disease. Unfortunately, identification of latent infection is not straightforward; impaired immunity may lead to false-negative tuberculin skin tests (such as the Mantoux test), and prior BCG vaccination and exposure to environmental mycobacteria to false-positive results. New blood tests—interferon γ release assays (IGRA)—may have significant advantages, detecting the release of interferon γ from lymphocytes when exposed to antigen. The antigens used are specific to TB and (unlike skin tests) not present in BCG or most environmental mycobacteria. They thus appear more specific than skin testing. HIV co-infection, however, can also reduce the utility of both Mantoux and IGRA tests. Individuals with suspected or proven TB, from a risk group with a high HIV prevalence, should be offered HIV testing. The third attribute of an effective screening programme for TB is that it should identify those with neither evidence of disease nor infection. Some of these may benefit from BCG vaccination against acquiring TB.

With an understanding of the distinction between TB infection and active TB disease, and with the threefold benefits of an ideal screening programme in mind, it is possible to see what different approaches might be capable of achieving. Clearly, x-ray screening simply prior to, or at the time of arrival is not enough. Although the 2006 Guidelines from the National Institute for Health and Clinical Excellence (NICE) do recommend screening after arrival it does seem in practice this is still envisaged as a one-off ‘snapshot’ assessment. In any case it is still going to miss many of those with latent infection, because skin testing is now limited to all those aged 0–15, and those aged 16–54 from sub-Saharan Africa, and at least 10% of untreated latency infected young adults from South Asia develop clinical TB within 10 years. Compared with the ‘before’ or ‘at’ arrival options, screening in the community after entry offers the opportunity for all the above interventions. Unfortunately, this ‘after’ entry process is provided by local TB services already stretched by increasing numbers of active TB cases, and even when numbers were lower the system had failings. It has been shown that when active intervention to improve screening of new arrivals is undertaken, the outcomes, in terms of people screened and where appropriate, vaccinated, were greatly improved when carried out in primary care.

Looking to the future, country of origin x-rays are very unlikely indeed to make an impact on the numbers of subsequent UK cases of TB in those born abroad, whatever the press might say or politicians might think. Screening by chest x-ray to detect active TB, and also by skin testing and more recently IGRA testing to detect and then treat latent TB, is the USA dual strategy, with a particularly high yield for new entrants from South Asia and sub-Saharan Africa. This policy may have contributed to stabilisation of the numbers of foreign-born cases, compared with an increase in England and Wales. In the USA, foreign-born cases have gone from 7403/24 825 (30%) in 1993, to 7750/13 243 (58%) in 2007, an increase in proportion but little in absolute number (5%). In England and Wales foreign-born cases have gone from 664/24 58 (49%) (6 month data) in 1993 to 6060/8417 (72%), so over the same time period in England and Wales there has been an increase in both the proportion and, significantly, the absolute numbers of (1204 to 3030 per 6 months: 252%). Whilst both countries have been fairly successful in reducing TB in native-born persons by good local TB control and treatment, the USA has had little increase in absolute numbers of foreign-born TB, perhaps due to their more aggressive detection and treatment of latent TB infection.

The most effective screening programme for new entrants will be targeted at high risk groups by interventions in the community; ideally in GP surgeries and indeed the home, where latent TB infection can be diagnosed. People can then be vaccinated if testing suggests no evidence of latent TB infection, or referred to the local TB service (usually the Chest Service) for further assessment if testing is positive. If evidence is needed as to how many people with latent TB infection are being missed with the current policy, then this could soon be achieved by funding short studies in high TB prevalence areas: either to tuberculin skin test all new entrants up to age 35 and IGRA blood test those positive, and/or obtain data on yield from those districts who still test such individuals as per the previous British Thoracic Society guideline. These could be focused on the new entrant groups with the highest TB rates (Black African 309/100 000) and South Asian (209/100 000), and in those aged under 35 years, who are more likely to benefit from the treatment of latent TB infection, and also confirming their completion rates for such preventive treatment.

However comprehensive we make the approach to identification of those who should be screened, there will be individuals who may be missed. The problem of
those unregistered with GPs and those in
anomalous positions—such as asylum
seekers—will remain and will require
alternative initiatives. Are sticks necessary
as well as carrots—as in The Netherlands
which links residency permits with TB
screening? The autonomy of the indi-
vidual in decisions about their own
healthcare is fundamental in the UK and
many other countries. The rights of those
who actually have infectious TB which
is a risk to others are, though, already
constrained in the UK both by Act of
Parliament (Public Health Act 1984) and
potentially by decisions of the Courts.
An extension of these limitations to those
who merely might have active TB or who
might get it in future would be a very hot
political issue. TB, though, is already a hot
political issue, and a rational, informed
and wide-ranging debate is overdue. The
present system is not adequate, and the
‘status quo’ is no longer a sensible or
scientific position, but merely x-raying all
potential immigrants would be worse.
Answers as to the utility, yield and cost of
various screening strategies should be
readily obtainable at little additional cost
because of the heterogeneity of what
actually is being done across England and
because of the heterogeneity of what
readily obtainable at little additional cost
various screening strategies should be
Answers as to the utility, yield and cost of

doi:10.1136/thx.2009.123273

REFERENCES
1. WHO. Global tuberculosis control—epidemiology,
strategy, financing. Geneva: World Health
2. Health Protection Agency. Tuberculosis in the UK.
Annual report on tuberculosis surveillance and control
in the UK 2008. London. Health Protection Agency
Centre for Infections, 2008 Oct 30. ISBN:
HPAvRefFile/HPAvWeb_C/12152568895463 (accessed
30 Oct 2009).
among foreign-born persons in the United States.
Achieving tuberculosis elimination. Am J Respir Crit
Care Med 2007;175:75—9.
4. Slack J. Migrants with TB should be sent home, say
screening in migrants in selected European countries
6. Comstock GW. Epidemiology of tuberculosis. In:
Reichman LB, Henshfield ES, eds. Tuberculosis: A
comprehensive international approach. Vol 144.
7. Ormerod LP. Tuberculosis screening and prevention
in new entrants 1983-88. Respir Med 1990;84:
269—71.
and yield of entry and follow-up screening for
tuberculosis among new immigrants. Eur Respir J
9. Gatwick health control confidential annual
2005.
10. Health Protection Agency. Port health and
inspection review. Report from the project team.
11. Ormerod LP, Green RM, Gray SM. Are there still
effects on Indian Subcontinent ethnic tuberculosis of
12. Tocque K, Bellis MA, Beeching N, et al. A case-
central study of lifestyle risk factors associated with
tuberculosis in the city of Liverpool, Northwest
13. National Collaborating Centre for Chronic
Conditions and the Royal College of Physicians.
Tuberculosis: clinical diagnosis and management of
tuberculosis, and measures for its prevention and
control. A clinical guideline for the NHS in England
nice.org.uk/CG33/nic equivalence/pdf/English
14. Davies PDO, Drobinievski FA. The use of gamma-
interferon blood tests for the detection of latent
standards for tuberculosis care. Lancet Infect Dis
16. Challener J, Ormerod LP. An assessment of the
impact of BCG vaccination on tuberculosis incidence
in South Asian adult immigrants. Commun Dis Public
17. Choudry IW, Ormerod LP. An economic evaluation
of the use of interferon gamma release assays in the
screening of contacts and new entrants for latent TB.
18. Ormerod LP. Serial surveys of tuberculosis nurse
and support staff in England and Wales in 1998 and
outreach to promote screening for tuberculosis in
primary care: a cluster randomised trial. Lancet
2007;369:1529—34.
among foreign-born persons in the United States.
JAMA 2008;300:405—12.
in England and Wales in 1993: results of a national
22. Joint Tuberculosis Committee of the British
Thoracic Society. Control and prevention of

Live and let die: is neutrophil
apoptosis defective in severe
asthma?

Helen Parfrey, Neda Farahi, Linsey Porter,
Edwin R Chilvers

Respiratory Medicine Division, Department of Medicine,
University of Cambridge School of Clinical Medicine,
Addenbrooke’s Hospital, CUHHSFT and Papworth
Hospital NHS Foundation Trust, Cambridge, UK

Correspondence to Professor Edwin Chilvers,
Respiratory Medicine Division, Department of Medicine,
University of Cambridge School of Clinical Medicine, Box
157, Level 5, Addenbrooke’s Hospital, Hills Road,
Cambridge CB2 0QQ, UK; erc24@cam.ac.uk

Patients with severe asthma make up
a relatively small proportion of the total
case population of patients with asthma yet
account for a disproportional amount of
asthma-related morbidity and healthcare
utilisation.1 2 These patients are usually
highly symptomatic, difficult to treat and
can be extremely refractory to current
treatments. As a consequence, under-
standing the mechanisms underlying this
particular form of asthma is of paramount
importance.

Morphological examination of the asth-
matic airway reveals epithelial desqua-
amation, thickening of the reticular basement
membrane, mucus gland hyperplasia, goblet
cell differentiation, angiogenesis and smooth
muscle hypertrophy.3 In addition to these
structural changes, an inflammatory cell
infiltrate is evident within the airways
comprising eosinophils, mast cells,
lymphocytes and neutrophils. While eosin-
ophils are the most characteristic inflam-
atory cell type present in mild to moderate
asthma, the neutrophil seems to take centre
stage more often in patients with severe
disease. In fact, the neutrophil is one of the
earliest inflammatory cells recruited to the
airways following allergen exposure and is
particularly evident in bronchoalveolar
lavage samples and bronchial and trans-
bronchial biopsies from patients with

Thorax August 2010 Vol 65 No 8

665

Downloaded from http://thorax.bmj.com/ on June 23, 2017 - Published by group.bmj.com
Rethinking TB screening: politics, practicalities and the press

J Moore-Gillon, Peter D O Davies and L Peter Ormerod

Thorax 2010 65: 663-665 originally published online July 7, 2010
doi: 10.1136/thx.2009.132373

Updated information and services can be found at:
http://thorax.bmj.com/content/65/8/663

These include:

References
This article cites 15 articles, 6 of which you can access for free at:
http://thorax.bmj.com/content/65/8/663#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/