Paediatric lung disease - Inskip HM, Godfrey KM, Robinson S, et al. Cohort profile: The Southampton Women's Survey. Int J Epidemiol 2006;35:42—8. - Royston P. Calculation of unconditional and conditional reference intervals for foetal size and growth from longitudinal measurements. Stat Med 1995;14:1417 –36. - Barros A, Hirakata V. Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodal 2003;3:21. - Baird J, Poole J, Robinson S, et al. Milk feeding and dietary patterns predict weight and fat gains in infancy. Paediatr Perinat Epidemiol 2008;22:575–86. - Rudolph AM. The fetal circulation and its response to stress. J Dev Physiol 1984; 6:11—19. - Prescott SL, Macaubas C, Smallacombe T, et al. Development of allergen-specific T-cell memory in atopic and normal children. Lancet 1999;353:196—200. - Lang U, Baker RS, Khoury J, et al. Effects of chronic reduction in uterine blood flow on fetal and placental growth in the sheep. Am J Physiol Regul Integr Comp Physiol 2000;279:R53—9. - Bass H, Adkins B, Strober S. Thymic irradiation inhibits the rapid recovery of TH1 but not TH2-like functions of CD4+ T cells after total lymphoid irradiation. *Cell Immunol* 1991;137:316—28. - Collinson AC, Moore SE, Cole TJ, et al. Birth season and environmental influences on patterns of thymic growth in rural Gambian infants. Acta Paediatr 2003;92:1014—20. - Collinson AC, Ngom PT, Moore SE, et al. Birth season and environmental influences on blood leucocyte and lymphocyte subpopulations in rural Gambian infants. BMC Immunol 2008:9:18. - Moore SE, Cole TJ, Poskitt EM, et al. Season of birth predicts mortality in rural Gambia. Nature. 1997:388:434. - Maloney JE, Bowes G, Brodecky V, et al. Function of the future respiratory system in the growth retarded fetal sheep. J Dev Physiol 1982;4:279—97. - Maritz GS, Cock ML, Louey S, et al. Effects of fetal growth restriction on lung development before and after birth: a morphometric analysis. Pediatr Pulmonol 2001;32:201—10. - Wignarajah D, Cock ML, Pinkerton KE, et al. Influence of intrauterine growth restriction on airway development in fetal and postnatal sheep. Pediatr Res 2002;51:681—8. - Joyce BJ, Louey S, Davey MG, et al. Compromised respiratory function in postnatal lambs after placental insufficiency and intrauterine growth restriction. Pediatr Res 2001:50:641—9. - 29. Tanner JM. Catch-up growth in man. Br Med Bull 1981;37:233-8. - Camera PL, Zeiger R, Guilbert T, et al. Relationship between infant weight gain and later asthma. Pediatr Allergy Immunol 2009;21:82—9. - Castro-Rodriguez JA, Holberg CJ, Morgan WJ, et al. Increased incidence of asthma like symptoms in girls who become overweight or obese during the school years. Am J Respir Crit Care Med 2001;163:1344—9. - Hallstrand TS, Fischer ME, Wurfel MM, et al. Genetic pleiotropy between asthma and obesity in a community-based sample of twins. J Allergy Clin Immunol 2005;116:1235—41. - Zerah F, Harf A, Perlemuter L, et al. Effects of obesity on respiratory resistance. Chest 1993;103:1470—6. - Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112:1796 –808. - Gunnbjornsdottir MI, Omenaas E, Gislason T, et al. Obesity and nocturnal gastrooesophageal reflux are related to onset of asthma and respiratory symptoms. Eur Respir J 2004;24:116—21. ## **Lung alert** ## Step-up treatment for children with uncontrolled asthma Uncontrolled asthma can occur in children receiving low dose inhaled corticosteroids, but evidence to guide step-up treatment is currently lacking. In this study, 182 children (6–17 years of age) with uncontrolled asthma on 100 μg of fluticasone twice daily were randomly assigned to receive each of three blinded step-up treatments in a random order for a total of 48 weeks. During each 16 week period patients received: 100 μg of fluticasone plus 50 μg of the long-acting β -agonist salmeterol twice daily (LABA step-up), 250 μg of fluticasone twice daily (ICS step-up) or 100 μg of fluticasone twice daily plus 5 or 10 mg of the leukotriene receptor anatagonist montelukast once daily (LTRA step-up). A differential response to each of the three treatments was determined using three asthma control measures: use of oral prednisolone in acute exacerbations, number of asthma control days and forced expiratory volume in 1 s (FEV $_1$). The ability of prespecified baseline covariates to predict patterns of treatment response was assessed. Of the 165 patients evaluated, 161 (98%) showed a differential response, with the best response during LABA step-up treatment occurring significantly more frequently than during LTRA or ICS step-up. Higher scores in the asthma control test (better control at baseline) and white race predicted better responses to LABA step-up. Although this study showed better responses to LABA step-up, many children had the best responses with both of the other step-up treatments. This highlights the need for regular monitoring in child asthma therapy when stepping up treatment. ► Lemanske RF, Mauger DT, Sorkness CA, et al. Stepup therapy for children with uncontrolled asthma receiving inhaled corticosteroids. N Engl J Med 2010;362:975—85. ## **Claire Chambers** Correspondence to Claire Chambers, University College London, UK; claire.chambers@ucl.ac.uk Published Online First 29 October 2010 Thorax 2010;65:1106. doi:10.1136/thx.2010.145573 1106 Thorax December 2010 Vol 65 No 12