Plasma levels of TIMP-1 are higher in 34-year-old individuals with severe α1-antitrypsin deficiency

α1-Antitrypsin (AAT) is one of the major proteins in the circulation eliciting significant protection against activated serine proteases, such as neutrophil elastase and proteinase-3. Moderate and severe AAT deficiency (AATD) is almost entirely caused by the Z (Glu342 to lysine change) and S (Glu264 to valine change) alleles as opposed to the normal wild-type M allele. Severe ZZ deficiency of AAT, characterised by a decrease in serum AAT levels to values <20% of normal, entails a high risk of developing pulmonary emphysema. This fact provides the rationale for the protease–antiprotease imbalance theory of the pathogenesis of emphysema.

We hypothesised that in subjects with AATD, other protease inhibitors may mitigate the deficiency of AAT, and ensure the normal growth and function of the lung from childhood to early adulthood. In a previous report focusing on plasma markers of the serine protease–antiprotease balance, we have shown that 18-year-old ZZ and SZ AATD subjects, identified in the Swedish neonatal AATD screening of 1972–1974, had significantly higher plasma concentrations of α2-macroglobulin and α1-antichymotrypsin, and lower levels of neutrophil lipocalin, a marker of neutrophil activity. Interestingly, at the age of 26 the same ZZ and SZ AATD subjects had significantly higher plasma secretory leucocyte protease inhibitor and, again, lower neutrophil lipocalin levels, compared withagematched controls. At the 30-year check-up, these discrepancies were not confirmed.

In this study we wanted to investigate whether there is any relationship between circulating plasma levels of AAT and tissue inhibitor of metalloproteases-1 (TIMP-1), an important inhibitor of metalloproteases (MMPs) that plays a role in the pathogenesis of emphysema. The study cohort included the above-mentioned 34-year-old AATD subjects (ZZ, n=50; SZ, n=22) and 84agematched controls with normal AAT concentrations. As shown in table 1, plasma levels of AAT in the subjects were ranked MM>SZ>ZZ and were different among the groups (p <0.001). The levels of C-reactive protein, a general marker of inflammation, were normal in all three groups. The mean (95% CI) level of plasma TIMP-1 was 135.8 ng/ml (114.1 to 157.5) in the ZZ group, 99.4 ng/ml (74.9 to 123.5) in the SZ group and 65.5 ng/ml (56.9 to 73.9) in the MM group. Thus, plasma levels of TIMP-1 were higher in the ZZ (52.1%, p <0.001) and SZ group (27%, p <0.05) as compared with the controls. Linear regression analysis revealed an inverse relationship between levels of TIMP-1 and AAT (r =−0.459, p <0.001) (figure 1, supplementary data). Notably, the elevated TIMP-1 and its negative correlation with AAT levels were not related to the levels of C-reactive protein.

Previous studies in which TIMP-1 was analysed showed that under normal conditions the TIMP-1 levels outweigh MMPs, tipping the balance in favour of protease inhibitors. We therefore think that higher levels of TIMP-1 in young adults with AATD might provide a compensatory mechanism in maintaining the protease–antiprotease balance and blocking the destructive potential of proteases. We hope this finding opens a new window for further studies on the role of TIMPs/MMPs in the pathogenesis of AATD-related emphysema.

Sabina Janciauskiene,1 Devi Priya Subramaniam,1 Eeva Piitulainen,2 Thomas Köhle,1 Tomas Seger1
1Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; 2Department of Respiratory Medicine, Lund University, Institute of Clinical Sciences, Malmö University Hospital, Malmö, Sweden.

Correspondence to Sabina Janciauskiene, Department of Respiratory Medicine, Hannover Medical School, Carl-Neuberg Str. 1, D-30625 Hannover, Germany; janciauskiene.sabina@mh-hannover.de

Competing interests None.

Ethics approval This study was conducted with the approval of the Regional Ethical Review Board of Lund University, Sweden.

Provenance and peer review Not commissioned; externally peer reviewed.

### Table 1

<table>
<thead>
<tr>
<th>Study group</th>
<th>Number</th>
<th>Males/females</th>
<th>AAT (ng/ml) mean (SD)</th>
<th>CRP (ng/ml) mean (SD)</th>
<th>TIMP-1 (ng/ml) mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>Males</td>
<td>Females</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>MM</td>
<td>84</td>
<td>29/55</td>
<td>1.28 (0.36)</td>
<td>1.22 (0.3)</td>
<td>1.32 (0.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.12 (3.3)</td>
<td>1.39 (2.17)</td>
<td>2.5 (3.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65.3 (38.3)</td>
<td>59.5 (33.7)</td>
<td>68.3 (40.4)</td>
</tr>
<tr>
<td>SZ</td>
<td>22</td>
<td>12/10</td>
<td>0.601*** (0.11)</td>
<td>0.58 (0.09)</td>
<td>0.64 (0.13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.4 (2.2)</td>
<td>1.82 (2.7)</td>
<td>0.92 (1.24)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>99.4* (55.1)</td>
<td>113.5 (69.1)</td>
<td>82.4 (25.6)</td>
</tr>
<tr>
<td>ZZ</td>
<td>50</td>
<td>31/19</td>
<td>0.225** (0.08)</td>
<td>0.23 (0.06)</td>
<td>0.23 (0.11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.1 (2.2)</td>
<td>2.56 (2.56)</td>
<td>1.99 (1.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>136.4*** (75.2)</td>
<td>150.4 (84.9)</td>
<td>112.1 (53.9)</td>
</tr>
</tbody>
</table>

*p <0.05 and ***p <0.001 show significant difference between ZZ or SZ AAT deficiency and controls with the normal MM genotype of AAT.
Patients with 4 weeks of their diagnosis of thoracic cancer attending outpatient clinics were identified. After obtaining verbal consent, patients were asked to complete the SPARC questionnaire, if necessary with the help of a carer or the member of staff in attendance, with the instruction to leave any questions they were unsure of blank. On completion, they were asked to record on a separate feedback form if they felt the questionnaire was appropriate, had any comments about the questions asked or had any other comments. The results were collated anonymously and analysed using descriptive statistics, with comments relating to the questionnaire grouped into themes. The survey was registered with the Trust Governance and Health Audit department (no. 775).

Of those approached, 86% agreed to take part, with data from 100 patients analysed (63 male; mean (SD) age 68 (9) years; non-small cell lung cancer 70, small cell lung cancer 20, mesothelioma 10; all Caucasian, with English as the first language in 98). Questionnaires were completed by the patient alone, or with the aid of a member of staff or carer in 65, 22 and 8 instances, respectively. Of the maximum 56 responses, the median (IQR) number completed was 52 (47–54). The questionnaire was considered appropriate by 83 patients, not appropriate by 3, and 14 did not answer this question. Of 22 comments made, only one related to some questions being potentially upsetting (table 1). Patients had a median (IQR) of 2 (0–5), 4 (2–7) and 8 (5–12) symptoms or issues which distressed or bothered them ‘very much’, ‘quite a bit’ and ‘a little’, respectively. Most common were feelings of ‘cancer. A clear explanation of the purpose of the questionnaire, the instruction to leave a question blank when unsure and the offer of help to complete it, taken up by about a fifth of patients, may all have contributed to its feasibility. On the basis of our results, we have introduced the SPARC into routine practice, having increased the text size to improve readability.

Andrew Wilcock, Radka Klezlova, Sarah Coombes, Amanda Rawson, Rachel Bentley, Doug Hooper, Matthew Maddocks

Department of Palliative Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK

Correspondence to Dr Andrew Wilcock, Hayward House Specialist Palliative Care Cancer Unit, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK; andrew.wilcock@nottingham.ac.uk

Funding Macmillan Cancer Support.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

Accepted 27 November 2009


doi:10.1136/thx.2009.131243

REFERENCES


An outbreak of H1N1 influenza in a respiratory unit

Pandemic influenza A (H1N1) is a major global public health concern.1 We report an outbreak of H1N1 influenza involving clinical staff and patients in a teaching hospital in the North East of Scotland.

In October 2009, a teenage patient was admitted with an exacerbation of asthma. As there was no reason to suspect H1N1, the patient was not isolated. However, nose and throat swabs were in fact taken on the day of admission and were positive for H1N1 by PCR within 24 h. At this point, source isolation precautions were instituted. Seven other healthy clinical staff in our department (6 doctors and 1 nurse; mean age 29, three males) subsequently developed typical symptoms within the next 9 days. Cases were confirmed by viral PCR from pooled nasal and throat samples. As H1N1 was common in the community at this time, it was not possible to determine whether the patient was the source of infection; however, five of the affected clinical staff had been in direct contact with the patient and the first symptoms reported by them were 48 h following his admission to the ward.

Affected staff were advised to remain off work for a week after the initial onset of their symptoms; 33 working days were subsequently lost due to illness. The cumulative number of staff members infected with H1N1 virus in our unit over a week from the time of first symptoms reported by a member of staff is shown (figure 1). During the same period, six patients on the ward also tested positive for H1N1 after developing flu-like symptoms. In two of these, H1N1 was likely to have been contracted while in hospital as they had been admitted several days earlier and were recovering from their presenting illnesses.

Our experience has demonstrated that within the hospital environment, H1N1 is readily and rapidly transmissible between individuals. This outbreak highlights the importance of rapidly identifying infected patients and instituting source isolation procedures. Moreover, it is imperative that members of hospital staff use appropriate protection equipment and receive H1N1 immunisation (as recommended by the Department of Health) at the earliest opportunity. This should reduce the risk not only of healthcare workers contracting the virus from infected patients, but also of cross-infection between other patients and other healthcare workers. It is important that hospital trusts recognise the potential impact of H1N1 on frontline staffing and ensure appropriate contingency plans are made.

Andrew Wilcock, Radka Klezlova, Sarah Coombes, Amanda Rawson, Rachel Bentley, Doug Hooper, Matthew Maddocks

Department of Palliative Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK

Correspondence to Dr Andrew Wilcock, Hayward House Specialist Palliative Care Cancer Unit, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK; andrew.wilcock@nottingham.ac.uk

Funding Macmillan Cancer Support.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

Accepted 27 November 2009


doi:10.1136/thx.2009.131243

REFERENCES


An outbreak of H1N1 influenza in a respiratory unit

Pandemic influenza A (H1N1) is a major global public health concern.1 We report an outbreak of H1N1 influenza involving clinical staff and patients in a teaching hospital in the North East of Scotland.

In October 2009, a teenage patient was admitted with an exacerbation of asthma. As there was no reason to suspect H1N1, the patient was not isolated. However, nose and throat swabs were in fact taken on the day of admission and were positive for H1N1 by PCR within 24 h. At this point, source isolation precautions were instituted. Seven other healthy clinical staff in our department (6 doctors and 1 nurse; mean age 29, three males) subsequently developed typical symptoms within the next 9 days. Cases were confirmed by viral PCR from pooled nasal and throat samples. As H1N1 was common in the community at this time, it was not possible to determine whether the patient was the source of infection; however, five of the affected clinical staff had been in direct contact with the patient and the first symptoms reported by them were 48 h following his admission to the ward.

Affected staff were advised to remain off work for a week after the initial onset of their symptoms; 33 working days were subsequently lost due to illness. The cumulative number of staff members infected with H1N1 virus in our unit over a week from the time of first symptoms reported by a member of staff is shown (figure 1). During the same period, six patients on the ward also tested positive for H1N1 after developing flu-like symptoms. In two of these, H1N1 was likely to have been contracted while in hospital as they had been admitted several days earlier and were recovering from their presenting illnesses.

Our experience has demonstrated that within the hospital environment, H1N1 is readily and rapidly transmissible between individuals. This outbreak highlights the importance of rapidly identifying infected patients and instituting source isolation procedures. Moreover, it is imperative that members of hospital staff use appropriate protection equipment and receive H1N1 immunisation (as recommended by the Department of Health) at the earliest opportunity. This should reduce the risk not only of healthcare workers contracting the virus from infected patients, but also of cross-infection between other patients and other healthcare workers. It is important that hospital trusts recognise the potential impact of H1N1 on frontline staffing and ensure appropriate contingency plans are made.
Identifying supportive and palliative care needs in people with a recent diagnosis of thoracic cancer: acceptability of the SPARC questionnaire

Andrew Wilcock, Radka Klezlova, Sarah Coombes, Amanda Rawson, Rachel Bentley, Doug Hooper and Matthew Maddocks

*Thorax* 2010 65: 937-938 originally published online July 29, 2010
doi: 10.1136/thx.2009.131243

Updated information and services can be found at:
http://thorax.bmj.com/content/65/10/937.2

*These include:*

**Supplementary Material**  
Supplementary material can be found at:
http://thorax.bmj.com/content/suppl/2010/09/24/thx.2009.131243.DC1

**References**  
This article cites 1 articles, 0 of which you can access for free at:
http://thorax.bmj.com/content/65/10/937.2#BIBL

**Email alerting service**  
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:  
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:  
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:  
http://group.bmj.com/subscribe/