
asthma, can improve BHR when adminis-
tered chronically to patients with mild
asthma.19 This research has many parallels
with the use of b-blockers in the treat-
ment of patients with heart failure where
this class of drug was once contraindi-
cated as acute dosing produced adverse
effects in such patients.20 It was then
subsequently recognised that chronic dos-
ing with b-blockers was beneficial in
patients with heart failure, and the use
of this drug class is now considered a
central part of standard treatment guide-
lines. So-called ‘‘paradoxical pharmacol-
ogy’’,21 where there may be differential
effects of acute versus chronic dosing of a
given class of drug, would seem to be a very
important issue when considering the use
of drugs that recognize the b2 receptor.

Furthermore, given that it has been
recently suggested that some b-blockers
act as inverse agonists at the b2 receptor
and activate novel signalling pathways
that are required for the full asthma
phenotype in mice,22 it would seem time
to challenge the dogma that activation of
b2 receptors chronically is a good thing. If
nothing else, the study by Virchow and
colleagues provides further support for
why monotherapy with b2 receptor ago-
nists has no role in the treatment of
patients with asthma.
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Mechanisms of adverse effects
of b-agonists in asthma
Sebastian L Johnston, Michael R Edwards

Short-acting b-agonist (SABA) drugs have
been mainstays of asthma therapy for
many decades and are recommended
treatment at all levels of asthma severity,
as they provide prompt relief of asthma
symptoms through smooth muscle relaxa-
tion and, thereby, bronchodilatation. At
all levels of asthma severity more severe
than mild intermittent, SABAs are recom-
mended to be taken as required for relief

of symptoms in conjunction with inhaled
corticosteroids (ICSs) taken as regular
maintenance treatment. However, in mild
asthma SABAs are recommended as
monotherapy without concomitant ICS
therapy, and in both mild and more severe
asthma, greatly increased SABA use at
times of asthma exacerbation is almost
universal. Here we discuss the safety of
inhaled b-agonist monotherapy in asthma
and argue against the continued use of b-
agonist monotherapy (both short and long
acting) in the absence of concomitant ICS
therapy in a combination inhaler.

Several epidemiological studies link
overuse of SABA therapies at times of
asthma exacerbation with increased risk
of hospitalisation or mortality.1 2 The

mechanisms underlying this increased risk
have not been clearly determined, but are
most likely to involve complex mechan-
isms including delays in seeking medical
care, potential cardiac (tachycardia) and
metabolic (hypokalaemia) adverse effects
as well as possible effects on underlying
asthma severity. Although fenoterol, the
SABA linked with the epidemic of asthma
mortality in the early 1980s in New
Zealand3 and some other countries,4 has
greater cardiac effects than other SABAs,
the reduction in hospitalisations due to
asthma exacerbations (along with a reduc-
tion in asthma mortality) following the
withdrawal of high dose fenoterol in New
Zealand in 1990 suggested that the
reduction in asthma mortality was not
wholly due to reduction in cardiac/
metabolic side effects, but probably also
due to an effect on disease severity
(because if the reduction in mortality
were due to reduction in cardiac side
effects, the rate of hospitalisations due to
asthma exacerbations should have
remained unchanged).5
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The long-acting b-agonists (LABAs)
were introduced as asthma treatments in
the 1990s, and their use was shown to
result in improved lung function and
quality of life. Concerns about possible
risks associated with LABA treatment
were raised very soon after their introduc-
tion—these centred around the potential
of regular LABAs to reduce bronchodilator
sensitivity to b-agonists, to induce toler-
ance to b-agonists, the risk that the
reduction in symptoms achieved with
LABAs might reduce awareness of asthma
activity and therefore lead to a reduction
in usage of ICS therapy or reduced
awareness of worsening of asthma control
(masking)6 and finally that if SABAs do
have potential to increase disease severity,
LABAs might possess this property as
well. These concerns were increased by
the Salmeterol Multicenter Asthma
Research Trial (SMART)—this placebo-
controlled study on the safety of the
LABA salmeterol in adults with unstable
asthma showed a statistically significant,
fourfold increase in asthma-related deaths
with salmeterol.7 It was not possible to
determine if the risk extended to patients
receiving concomitant ICS treatment, nor
therefore whether the risk was restricted
to the use of salmeterol as monotherapy.
In view of these concerns, the Food and
Drug Administration (FDA) required
black-box warnings on the product labels
of both salmeterol and formoterol and
recommended that further research was
needed into the nature and magnitude of
risk with LABA treatment.

These data led to three important
questions relating to b-agonist treatment
in asthma. What is the evidence that
SABAs or LABAs may increase the under-
lying severity of asthma, what mechan-
isms might be involved and what is the
evidence that ICSs may protect against an
increase in severity consequent upon
SABA or LABA treatment?

Regarding the first two questions,
regular use of SABA was shown some
time ago significantly to increase peak
flow variability and bronchial hyper-
responsiveness when compared with as-
required use during the run-in period of
the study,8 to increase eosinophilic and
mast cell responses to allergen challenge,
to induce non-specific bronchial hyper-
reactivity5 and to increase sputum eosino-
phil counts9; however, the mechanisms
underlying these potential adverse effects
are not known.

A report in this issue of Thorax sheds
some new light on a potential mechanism
that may be involved in adverse effects of
b-agonists (see page 763). Lommatzsch et al

show that 14 days monotherapy with
salmeterol significantly increased brain-
derived neurotrophic factor (BDNF) con-
centrations in serum and platelets of
patients with asthma.10 This increase was
abolished by the addition of the ICS
fluticasone to the LABA treatment. The
induction of BDNF by LABA and protection
from this induction by ICSs were confirmed
in vitro and, importantly, changes in BDNF
concentrations in serum and platelets in the
in vivo study correlated with deterioration
in airway hyper-responsiveness (AHR) fol-
lowing LABA monotherapy, while, as pre-
viously reported many times, when ICSs
were added to the LABA treatment there
was a significant improvement in AHR. As
there is increasing evidence that BDNF may
enhance AHR and eosinophilia in allergic
airway inflammation,11 these findings sug-
gest that increased BDNF production may
underlie some of the adverse effects of
LABA monotherapy. They also suggest that
concomitant ICS therapy may exert pro-
tective effects through inhibition of this
induction.

These data have striking parallels with
our own observations with another proin-
flammatory mediator implicated in
asthma pathogenesis in a different experi-
mental setting, and these two reports
combined suggest a common molecular
mechanism potentially to explain adverse
effects of b-agonists in asthma. We
studied the effects of b-agonists and
ICSs on rhinovirus induction of interleu-
kin-6 (IL-6) as IL-6 is a proinflammatory
cytokine and as rhinovirus infections are
the major cause of acute exacerbations of
asthma. We observed that both salmeterol
and the SABA salbutamol increased rhi-
novirus-induced IL-6 production; the
induction of IL-6 by salmeterol could also
be induced directly by cAMP, and by
other cAMP-elevating agents.12 Salmeterol
increased rhinovirus-induced IL-6 promo-
ter activation via a mechanism dependent
upon a cAMP response element (CRE) in
the IL-6 promoter. Both SABAs and
LABAs are well known to signal their
beneficial effects via increasing intracellu-
lar levels of cAMP. These data indicate
that potential adverse effects (eg, induc-
tion of IL-6) are mediated via exactly the
same mechanism (induction of cAMP).

Interestingly, BDNF is also regulated
via a CRE in its promoter.13 Although not
studied directly by Lommatzsch and
colleagues, these facts strongly suggest
that the induction of BDNF by salmeterol
is likely to have occurred via cAMP-
dependent induction of increased BDNF
mRNA transcription via the CRE in the
BDNF promoter. How many other

molecules with potential adverse effects
in asthma might also be induced by
cAMP? The answer is not known, but a
very recent report indicates that Th17
cells and IL-17 production are both
directly induced by cAMP.14 Since Th17
cells and IL-17 have potent proinflamma-
tory properties,15 it is likely that induction
of these responses by cAMP-inducing
agents in acute exacerbations of asthma
would further increase airway inflamma-
tion. A number of other molecules impli-
cated in asthma pathogenesis have also
been shown to be regulated via a CRE in
their promoter, including cyclo-oxyge-
nase-2 (COX-2),16 matrix metallopro-
tease-2 (MMP-2)17 and the mucins
MUC818 and MUC5AC.19 These data
suggest that b-agonists, while bronchodi-
lating through smooth muscle relaxation,
might at the same time have the potential
to increase airway obstruction through
increasing mucosal inflammation and
oedema while simultaneously clogging
the airway with secreted mucins.

A further important recent report sug-
gests that the number of other genes that
might be similarly regulated via CREs
(and therefore potentially be induced by
SABA or LABA treatment), might extend
into hundreds and possibly thousands of
genes as the cAMP response element-
binding protein (CREB) was found to
occupy ,4000 human gene promoter sites
in vivo, including large numbers of tran-
scription factors and other genes with
potential proinflammatory activities.20

These studies were not performed in
respiratory tissues/cells; however, the
above data combined make it clear that
SABAs and LABAs have the potential to
induce many other genes in asthmatic
lung tissue in addition to IL-6 and BDNF.

In our in vitro studies, the ICS flutica-
sone alone inhibited rhinovirus induction
of IL-6, and the addition of fluticasone to
salmeterol at equimolar concentrations
suppressed the induction of IL-6 observed
with salmeterol, indicating that ICSs can
counteract the induction of IL-6 observed
with LABAs. Similar observations were
made by Lommatzsch et al with respect to
BDNF, as fluticasone was also shown to
reduce BDNF concentrations when used
alone in vitro, and, when combined with
salmeterol, to block the induction of
BDNF both in vitro and in vivo.10

Interestingly, each of IL-17, MMP-2,
MUC8 and MUC5AC, reported to be
induced by cAMP or via a CRE in their
promoter in the studies cited above,14 17–19

have independently also been shown to be
suppressed by steroids.21–23 These data
suggest that use of b-agonist/ICSs in
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combination inhalers may have other
benefits beyond increasing compliance
with ICS therapy and ensuring that ICS
use is increased at times of worsening
asthma control. The ICS component may
also block direct genomic adverse effects
of b-agonists while maintaining the ben-
eficial bronchodilator effects, and syner-
gistic or additive anti-inflammatory
effects.24 25 This suppression of direct
adverse effects might be of particular
importance at times of asthma exacerba-
tion, when increased use of b-agonists is
so common.

Further studies are urgently required to
address which genes other than IL-6 and
BDNF are induced by SABAs and LABAs
in human cells in vitro, to determine
whether such genes are similarly induced
by b-agonists in asthma in vivo, to
investigate the doses at which beneficial
effects (bronchodilatation) occur (likely to
be low) and those at which adverse effects
occur (likely to be higher), and to define
the role of ICSs in counteracting these
adverse effects.

Until such time as we have this further
information, it would seem prudent to
advise that LABA treatment should only
be used in combination inhalers so that
concomitant ICS treatment is obligatory.
It is our view that prescribing LABAs and
ICSs in separate inhalers is potentially
unsafe as patients can (and many prob-
ably do) then take LABA monotherapy
through failure to comply with the use of
their separate ICS inhaler. It is likely that
such practice would occur particularly at
times of exacerbation, when desire for
immediate symptom relief becomes a
driving force guiding use of asthma treat-
ments.

What should we do about SABA treat-
ment? We currently have the paradox
that LABA use as monotherapy is strongly
discouraged by all treatment guidelines,
including American Thoracic Society
(ATS)/European Respiratory Society
(ERS), British Thoracic Society (BTS)
and Global Initiative for Asthma
(GINA), while SABA monotherapy is
recommended in mild asthma. Data con-
tinue to show (as they have done for
many years) that mortality continues to
occur in mild asthma in the context of
excessive SABA usage without ICS cover26

(and Shuaib Nasser personal communica-
tion). Given that there is clinical evidence
of harm associated with b-agonist

monotherapy, now with the added evi-
dence of induction of potentially harmful
mediators, as well as a molecular mechan-
ism to explain both this induction and a
protective effect of ICSs on this adverse
effect, we believe that recommendations
to combine a b-agonist/ICS in a single
inhaler should now be extended to include
SABA usage in the treatment of asthma.
Combining the ICS with the SABA would
ensure that ICS treatment is increased at
times of increased disease activity, as well
as potentially protecting against adverse
effects of SABA overuse at the time of
asthma exacerbation.
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