Associations of *IL6* polymorphisms with lung function decline and COPD

J-Q He,¹ M G Foreman,² K Shumansky,¹ X Zhang,¹ L Akhabir,¹ D D Sin,¹ S F P Man,¹ D L DeMeo,^{2,3} A A Litonjua,^{2,3} E K Silverman,^{2,3} J E Connett,⁴ N R Anthonisen,⁵ R A Wise,⁶ P D Paré,¹ A J Sandford¹

► Additional information is published online only at http:// thorax.bmj.com/content/vol64/ issue8

¹ The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research and the Department of Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; ² Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; ³ Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; ⁴ Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA; ⁵ Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; ⁶ Faculty of Medicine, Johns Hopkins University, Baltimore, Maryland, USA

Correspondence to:
Dr A J Sandford, UBC James
Hogg iCAPTURE Centre for
Cardiovascular and Pulmonary
Research, St Paul's Hospital,
1081 Burrard Street, Vancouver,
BC, Canada V6Z 1Y6;
asandford@mrl.ubc.ca

J-QH and MGF contributed equally to this work.

Received 21 November 2008 Accepted 17 March 2009 Published Online First 8 April 2009

ABSTRACT

Background: Interleukin-6 (IL6) is a pleiotropic proinflammatory and immunomodulatory cytokine which probably plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). There is a functional single nucleotide polymorphism (SNP), -174G/C, in the promoter region of *IL6*. It was hypothesised that *IL6* SNPs influence susceptibility for impaired lung function and COPD in smokers.

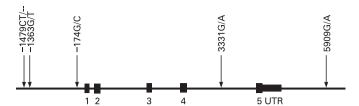
Methods: Seven and five SNPs in *IL6* were genotyped in two nested case-control samples derived from the Lung Health Study (LHS) based on phenotypes of rate of decline of forced expiratory volume in 1 s (FEV₁) over 5 years and baseline FEV₁ at the beginning of the LHS. Serum IL6 concentrations were measured for all subjects. A partially overlapping panel of nine *IL6* SNPs was genotyped in 389 cases of COPD from the National Emphysema Treatment Trial (NETT) and 420 controls from the Normative Aging Study (NAS).

Results: In the LHS, three *IL6* SNPs were associated with decline in FEV₁ (0.023 \leqslant p \leqslant 0.041 in additive models). Among them, the *IL6*_-174C allele was associated with a rapid decline in lung function. The association was more significant in a genotype-based analysis (p = 0.006). In the NETT-NAS study, *IL6*_-174G/C and four other *IL6* SNPs, all of which are in linkage disequilibrium with *IL6*_-174G/C, were associated with susceptibility to COPD (0.01 \leqslant p \leqslant 0.04 in additive genetic models).

Conclusion: The results suggest that the $IL6_-174$ G/C SNP is associated with a rapid decline in FEV₁ and susceptibility to COPD in smokers.

Interleukin 6 (IL6) is a pleiotropic pro-inflammatory and immunomodulatory cytokine secreted by airway epithelial cells, alveolar macrophages, adipocytes and myocytes as well as other tissues and cells.12 The potential importance of IL6 in the pathogenesis of chronic obstructive pulmonary disease (COPD) is suggested by studies showing that high levels of serum or sputum IL6 are associated with impaired lung function or a faster decline in lung function. 1 2 IL6 has been related to skeletal muscle weakness in COPD,3 as well as to exacerbations⁴ and pulmonary infections⁵ in patients with COPD. In addition, overexpression of IL6 in the murine lung resulted in airway inflammation and emphysema-like airspace enlargement.6 Furthermore, IL6 is an important mediator of the acute phase response and can upregulate C-reactive protein (CRP) at the transcriptional level.7 CRP has been associated with lung function levels in healthy individuals and/or lung function decline in smoking-induced COPD.89 Taken together, these data support IL6 as an appealing candidate gene for smoking-induced lung function impairment and COPD.

The *IL6* gene is located on chromosome 7p21. Previous studies have identified a functional single nucleotide polymorphism (SNP), -174G/C, in the promoter region of *IL6*. Before initiation of the current study, a small study reported no association of an *IL6* SNP with COPD. Recently, another group showed that the *IL6*-572C allele was associated with COPD. Large well-designed studies with carefully defined COPD phenotypes are required to unravel the exact role of *IL6* genetic variants in the pathogenesis of COPD.


We investigated smokers with mild to moderate airflow obstruction who were participants in the Lung Health Study (LHS) cohort and hypothesised that there would be significant associations between SNPs and haplotypes in IL6 with the rate of decline and/or the level of lung function, and that these associations would be mediated by influencing IL6 serum concentrations. The LHS cohort provides an excellent opportunity to explore associations between gene polymorphisms and haplotypes with percentage predicted forced expiratory volume in 1 s (FEV₁), ¹³ ¹⁴ as well as the rate of decline in FEV₁. 15 16 To validate novel associations between IL6 SNPs with lung function phenotypes, replication of results was sought in cases of COPD from the National Emphysema Treatment Trial (NETT) with participants from the Normative Aging Study (NAS) serving as controls.17 18

METHODS

Study participants

LHS participants

A total of 1488 subjects were selected from approximately 4800 LHS subjects for whom DNA and serum were available. The selection generated two nested case-control studies based on the extremes of rate of decline in lung function and baseline lung function. In the decline of lung function study we selected the 266 and 293 non-Hispanic white subjects with the fastest and slowest rate of decline of lung function, respectively, during the 5-year follow-up period (arbitrary cut-off points of ≥3.0% predicted decrease/ year and ≥0.4% predicted increase/year in FEV₁ were used for rapid decliners and non-decliners, respectively). The rationale to select nested casecontrol studies with the indicated sample sizes is that (1) this approach has the advantage of

Figure 1 The *IL6* gene structure and position of single nucleotide polymorphisms genotyped in subjects in the Lung Health Study. Numbered regions represent exons. A, adenine; C, cytokine; G, guanine; T, thymidine; UTR, untranslated region.

reducing cost while keeping satisfactory statistical efficiency when compared with the full cohort approach; 19 20 (2) the Common Disease/Common Variants hypothesis (CD/CV) was suggested one decade ago which states that disease susceptibility alleles of common diseases will be present at high frequencies;²¹ and (3) this sample size has relatively adequate power to detect common genetic risk variants as shown in our previous power analyses.²² The baseline lung function study consisted of the 532 and 527 participants who had the highest and lowest baseline percentage predicted FEV₁, respectively (arbitrary cut-off points of ≥88.9% and ≤67.0% predicted were used for the high and low baseline groups, respectively). One hundred and thirty participants overlapped between the two sets of nested cases and controls owing to the fact that subjects in the rate of decline study group had baseline lung function within one of the categories for baseline lung function.

NETT-NAS participants

We selected 389 non-Hispanic white subjects who were enrolled in the NETT Genetics Ancillary Study. The control group was composed of 420 participants with normal spirometry from the NAS, a longitudinal study over the past four decades of healthy adult men that was initiated by the Boston Veterans Administration. More information on the participants is included in the online supplement.

TagSNP selection and genotyping methods

In the LHS, five tagSNPs were chosen from the SeattleSNPs database using the LDSelect program based on a relatively stringent linkage disequilibrium (LD) threshold of $\rm r^2 > 0.8$ and minor allele frequency cut-off of 10%. An additional two SNPs selected for the NETT-NAS study were subsequently chosen for genotyping in the decline of lung function study in order to make the two studies more comparable. The nomenclature for the polymorphisms used in the study is summarised in table E1 in the online supplement. SNP genotyping was performed using the TaqMan method (Applied Biosystems, Foster City, California, USA) for five tagSNPs and the Illumina Bead Array System Illumina Inc, San Diego, California, USA for the additional two SNPs. The positions of the selected and successfully genotyped five tagSNPs are shown in fig 1.

In the NETT-NAS, the same criteria were used to select six LD-tagging *IL6* SNPs and three additional *IL6* SNPs were also selected for genotyping. The SNPs were genotyped on an Illumina BeadStation 500G System Illumina Inc using the GoldenGate assay technology (Illumina Golden Gate Assay, San Diego, California, USA). SNP selection criteria are shown in more detail in the online supplement.

Measurements of serum IL6 concentration in LHS participants

After collection the blood samples were separated into their various components and shipped to the LHS data coordinating centre on dry ice and kept at -70° C until use. The serum samples were thawed once for IL6 measurements. The concentrations of IL6 were measured using a highly sensitive chemiluminescent multiplexed sandwich immunoassay (SearchLight Proteome Array System, Rockford, Illinois, USA).

Statistical analysis

In the LHS, Hardy-Weinberg equilibrium tests and LD estimations were calculated using the genetics package for R (www. r-project.org). Multiple logistic regressions for rate of decline and baseline lung function were performed to test for the association with *IL6* SNPs and with *IL6* serum levels. Confounding factors included body mass index, age, gender, pack years of smoking and smoking status. Multiple linear regression was performed for the complete data set to test for association of *IL6* SNPs with log *IL6* serum levels. Haplotype analysis was done using the R hapassoc package. In the NETT-NAS, similar analyses were performed with SAS Genetics (Cary, North Carolina, USA). The statistical analysis is described in more detail in the online supplement.

RESULTS

Characteristics of study participants

In the total of 1488 participants from the LHS, genotyping success rates were 96.4–98.6% for the five studied *IL6* tagSNPs in all subjects and 97.9% for the additional two SNPs in the rate of decline study. The demographic characteristics are shown in table 1.

There were significant differences in several potential confounding factors such as age, gender, pack years of smoking and smoking status between study groups. Multiple regressions were therefore performed to adjust for relevant confounding factors.

In the total of 809 participants in the NETT-NAS, the genotype call rate for $IL6_615A/G$ (rs2069832) was 85%; for all other SNPs the call rates were \geq 97%. The demographic characteristics for the study groups are shown in table 2.

Linkage disequilibrium (LD) pattern, Hardy-Weinberg disequilibrium and performance of tagSNPs

The LD pattern of the five IL6 tagSNPs in the full set of 1488 LHS study participants is shown in fig 2A. The $\rm r^2$ values ranged from 0.04 to 0.89. It is worth noting that the $\rm r^2$ values between IL6_-1479 (rs2069825) and IL6_-174 (rs1800795), as well as IL6_3331 (rs2069845) and IL6_-174, were greater than 0.86, which indicates that it is necessary to genotype only one of these three SNPs. The LD patterns of the low and high lung function subgroups were similar to that of all subjects (data not shown), as were those of the fast-declining and non-declining subgroups; the LD pattern of all seven SNPs genotyped in fast-declining and non-declining subgroups are shown in fig 2B. All the studied SNPs were in Hardy-Weinberg equilibrium. More information on performance of tagSNPs is included in the online supplement.

Associations of SNPs and haplotypes in the \emph{IL6} gene with rate of decline and baseline FEV_1

Three of seven IL6 SNPs were associated with FEV₁ decline (0.023 \leq p \leq 0.041 in additive genetic models; table 3). The well-known functional SNP IL6_-174G/C (rs1800795) was among

Table 1 Distribution of demographic characteristics for all subjects and those in the two nested case-control study groups in the Lung Health Study (LHS)

		Rate of decline study			Baseline lung function study			
	All participants (N = 1488)	Fast decliners (n = 266)	Non-decliners (n = 293)	p Value	High function (n = 532)	Low function (n = 527)	p Value	
Gender (M/F)	948/540	158/108	197/96	N/A	352/180	325/202	N/A	
Age (years)	48.41 (0.18)	49.47 (0.40)	47.48 (0.40)	< 0.001	46.21 (0.77)	50.76 (0.26)	< 0.001	
Smoking history (pack- years)*	40.41 (0.48)	43.23 (1.18)	38.35 (1.06)	0.002	35.33 (0.13)	45.24 (0.81)	< 0.001	
Smoking status during 5- year follow-up†								
Continuing smokers	979	266	293	N/A	264	286	N/A	
Intermittent quitters	315	N/A	N/A	N/A	157	158	N/A	
Sustained quitters	194	N/A	N/A	N/A	111	83	N/A	
BMI (kg/m²)	25.49 (0.10)	25.22 (0.25)	25.77 (0.21)	0.091	25.39 (0.15)	25.57 (0.18)	0.455	
ΔFEV_1 /year (% predicted pre-BD);	-0.98 (0.05)	-4.13 (0.07)	1.09 (0.04)	<0.001	-0.55 (0.07)	-1.22 (0.08)	< 0.001	
ΔFEV_1 /year (% predicted post-BD)§	-0.85 (0.04)	-3.44 (0.08)	0.70 (0.05)	<0.001	-0.75 (0.06)	-0.74 (0.08)	0.949	
Baseline FEV ₁ (% predicted pre-BD)¶	74.15 (0.30)	72.68 (0.54)	75.51 (0.47)	< 0.001	86.49 (0.13)	61.07 (0.18)	< 0.001	
Baseline FEV ₁ (% predicted post-BD)**	77.57 (0.34)	75.00 (0.56)	79.80 (0.47)	<0.001	91.81 (0.10)	62.57 (0.14)	< 0.001	
Median (IQR) IL6 (pg/ml)	2.60 (1.80-4.20)	2.75 (2.00-4.03)	2.70 (1.70-4.50)	0.184	2.50 (1.70-3.90)	2.70 (1.85-4.55)	0.12	

Values are mean (SEM) for continuous data.

them. The frequency of the $IL6_-174C$ allele was significantly higher in the group with rapid decline of FEV_1 than in the non-declining group (45.2% vs 39.6%, odds ratio (OR) 1.30, 95% CI 1.01 to 1.66, p = 0.041). The association was more significant in the genotype-based analysis (p = 0.006), with six out of seven SNPs reaching a significance level of p<0.05 (table 3).

It is worthwhile to note that the most significant association was found for the $IL6_$ -1479CT in/del (rs2069825): the $IL6_$ -1479CT deletion was associated with a rapid decline in FEV $_1$ (p<0.001, table 3). Three other IL6 SNPs were not significantly associated in the additive model but were significant in the genotype-based analysis (table 3). The $IL6_$ -1479 CT in/del and another two associated IL6 SNPs were in high LD with $IL6_$ -174G/C. Interestingly, the $IL6_$ 5909G/A and $IL6_$ 1754C/G,

Table 2 Distribution of demographic characteristics for NETT COPD cases and NAS controls

Demographic characteristics	NETT (n = 389)	NAS (n = 420)	p Value	
Age (years)	67 (6)	68 (9)	0.9	
Pack-years	66 (30)	39 (27)	< 0.001	
FEV ₁ (% predicted, post-BD)*	28 (7)	92 (11)		
Median (IQR) modified BODE score†	5 (3)	NA		
Gender (% male)	64%	100%		

Values are mean (SD) unless otherwise stated.

which were not in high LD with $IL6_-174G/C$ and not in high LD with each other ($r^2=0.52$), were also significantly associated with decline in lung function (table 3). No association was found for IL6 haplotypes with rate of decline in FEV₁; IL6 SNPs and haplotypes were not associated with the baseline level of FEV₁ (data not shown).

Associations of *IL6* SNPs and haplotypes with serum IL6 concentrations

The associations of *IL6* SNPs with serum IL6 concentrations were analysed in all subjects in the LHS for five tagSNPs and in subjects in the rate of decline study for two additional SNPs by linear regressions adjusted for BMI, age, gender, pack years of smoking and smoking status (table 4). No significant association was found for *IL6* SNPs with IL6 concentrations. *IL6* haplotypes were also not associated with IL6 concentrations (data not shown).

Associations of serum IL6 concentrations with rate of decline and baseline \mbox{FEV}_1

As shown in table 1, there were no significant differences in IL6 concentrations between the rapid decline and non-decline groups or between high and low ${\rm FEV_1}$ groups.

Replication of novel IL6 associations in NETT-NAS participants

In the LHS, IL6 SNPs were significantly associated with rate of decline of FEV $_1$ in patients with mild COPD. Since rapid decline of lung function in smokers is the likely method of development of COPD, we reasoned that the same SNPs would be associated with advanced COPD. To test this we used a case-control sample that has been very useful in revealing genes associated

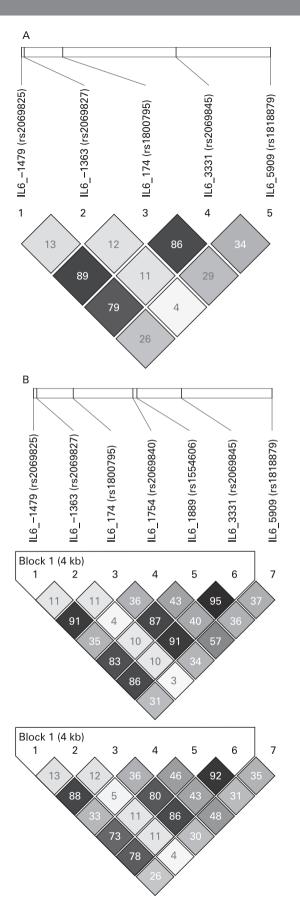
BD, bronchodilator; BMI, body mass index; FEV₁, forced expiratory volume in 1 s; IL6, interleukin 6.

^{*}Number of packs of cigarettes smoked per day \times number of years smoking.

[†]Continuing smokers: participants who reported smoking at each annual visit. Sustained quitters: participants who were validated by salivary cotinine or exhaled carbon monoxide levels as abstinent at every annual visit. Intermittent quitters: participants who were not sustained quitters or continuing smokers.

[‡]Change in lung function over a 5-year period per year as pre-bronchodilator percentage predicted FEV₁.

^{\$}Change in lung function over a 5-year period per year as post-bronchodilator percentage predicted FEV₁.


[¶]Lung function at the start of the Lung Health Study as measured by pre-bronchodilator FEV₁ percentage predicted.

^{**}Lung function at the start of the Lung Health Study as measured by post-bronchodilator FEV1 percentage predicted.

BD, bronchodilator; FEV₁, forced expiratory volume in 1 s; IQR, interquartile range; NAS, Normative Aging Study; NETT, National Emphysema Treatment Trial.

^{*}FEV₁ percentage predicted values for the NETT and NAS are based on the prediction equations of Crapo *et al*;³⁶ however, the NAS-1988 standards were used in the selection of the control group.

 $[\]dagger \text{Modified BODE}$ score incorporates the University of San Diego Shortness of Breath Questionnaire.

Figure 2 Linkage disequilibrium (LD) of single nucleotide polymorphisms (SNPs) of *IL6* in Lung Health Study subjects using HAPLOVIEW. The LD between any two SNPs is listed in the cross cell. The darker the colour, the higher the LD between any two SNPs. (A) All subjects. (B) Top: fast-declining group; bottom: slow-declining group.

with COPD.^{17 18} In the NETT-NAS study, cases had advanced COPD requiring lung volume reduction surgery and controls were derived from a population of smokers who have not developed COPD. The IL6_-174G/C and another four IL6 SNPs, which had high LD with IL6_-174G/C, were associated with susceptibility to COPD (0.01 \leq p \leq 0.04 in additive genetic models). The IL6_-174C allele was associated with susceptibility to COPD (OR 1.3, 95% CI 1.1 to 1.7, p = 0.01 in an additive genetic model). The frequency of the IL6_-174C allele was significantly higher in the NETT group than in the NAS group (42% vs 36%). The association was also significant in genotype-based analysis (p = 0.03, table 3).

DISCUSSION

Only three studies have been published on associations of IL6 SNPs with COPD. Seifart et al reported that there was no association of IL6_-174 with COPD, 11 Broekhuizen et al did not find an association between IL6_-174 and a cachexia phenotype in subjects with COPD²³ and Córdoba-Lanús et al recently reported that IL6 -572 but not IL6 -174 was associated with COPD.¹² All three studies have relatively small sample sizes. The associations of IL6 SNPs with decline in FEV1 in the current study are novel and are the most significant findings among all the studies we have published using the LHS cohort. 13-16 24-27 To strengthen our initial finding in the LHS, we incorporated an association study of IL6 SNPs with COPD in the NETT-NAS. All SNPs that were genotyped and in high LD with the IL6 -174G/C showed significant or borderline association with rapid decline of lung function in the LHS and with COPD in the NETT-NAS. We believe that the strength of the associations, the concordant results with several SNPs in high LD with the IL6 -174G/C SNP, the available previous functional data on IL6 -174G/C, the replication in a second population and the biological plausibility for association provide strong evidence that this is a true association.

We examined the association of *IL6* SNPs with IL6 serum levels as well as relationships between IL6 serum levels and lung function decline. We did not find any associations. We also found that adjusting the associations between *IL6* SNPs and lung function for serum CRP levels in the LHS had no effect on the strength of the associations (data not shown). Therefore, we did not find evidence that the associations we report were mediated through an influence on production of IL6 or CRP.

Studies that have examined the effects of IL6 SNPs on IL6 mRNA and protein expression have led to conflicting results. The first reporter gene study demonstrated that a construct containing the -174G allele had higher reporter gene expression in HeLa cells, both under basal conditions and after LPS or IL1 stimulation.¹⁰ However, a second reporter gene study showed that a construct containing -174C had higher IL1-induced expression in HeLa cells than that of the -174G construct, although the difference did not reach statistical significance.²⁸ By comparison of the two different cell types, the authors concluded that there is a cell type-specific regulation of IL6 expression.²⁸ Nine of the most recently published studies of *IL6* SNPs with circulating IL6 concentrations are summarised in table E2 in the online supplement. A recent meta-analysis of 5659 subjects from 17 studies concluded that the -174 IL6 SNP was not associated with circulating IL6 levels.²⁹ There are several explanations for the lack of consistent associations. First, the IL6 -174G/C polymorphism might not be a strong determinant of serum IL6 levels. Second, the serum half-life of IL6 is short. Serum IL6 levels show marked diurnal variability.30 The blood samples for IL6 measurement in most studies, including our

Table 3 Associations of SNPs in IL6 with rate of decline of FEV1 in the LHS and association with COPD in the NETT-NAS

	SNP ID	SNP in gene	LD (r ² with rs1800795)		Rate of FEV ₁ decline study in the LHS			COPD case-control study in the NETT-NAS				
Bin			LHS	NETT- NAS	Fast decline MAF %	Non- decline MAF %	p Value‡ genotype based	p Value‡ additive	NETT MAF %	NAS MAF %	p Value§ genotype- based	p Value§ additive
1	rs1800797†	-598G/A	NA	0.93					0.41	0.35	0.06	0.02
1	rs1800795*†	-174G/C	_	_	0.45	0.40	0.006	0.041	0.42	0.36	0.03	0.01
1	rs2069832†	615A/G	NA	0.98					0.42	0.37	0.10	0.09
1	rs1474348†	1090G/C	NA	0.97					0.41	0.36	0.10	0.04
1	rs1474347†	1306G/T	NA	0.98					0.42	0.36	0.06	0.03
2	rs1554606*†	1889G/T	0.84	0.87	0.47	0.43	0.011	0.103	0.44	0.38	0.02	0.01
2	rs2069845*	3331G/A	0.89	NA	0.47	0.42	0.007	0.078				
3	rs2069825*	-1479CT/-	0.90	NA	0.44	0.37	< 0.001	0.023				
4	rs2069840*†	1754C/G	0.36	0.33	0.32	0.37	0.005	0.064	0.35	0.36	0.30	0.70
5	rs1818879*	5909G/A	0.32	NA	0.29	0.34	0.012	0.035				
6	rs2069827*†	-1363G/T	0.12	0.14	0.08	0.08	0.786¶	0.669	0.09	0.09	0.90	0.40
Other	rs2069849†	4338C/T	NA	0.02					0.03	0.02	0.20	0.20

COPD, chronic obstructive pulmonary disease; FEV₁, forced expiratory volume in 1 s; LD, linkage disequilibrium; LHS, Lung Health Study; MAF, minor allele frequency; NAS, Normative Aging Study; NETT, National Emphysema Treatment Trial; SNP, single nucleotide polymorphism.

own, were not taken at a specific time of the day. A third explanation is that the SNPs studied may not be the actual functional SNPs. Recently, Samuel and colleagues have identified a novel IL6 transcriptional regulatory region (-5307 to -5202) much farther from the transcription initiation site than IL6_-174.³¹ This report coupled with more recent identification of a novel functional SNP, IL6_-6331T/C (rs10499563), with the T allele preferentially binding to Oct-1 transcription factor and producing higher reporter gene expression, provides evidence

that additional functional SNPs do exist in IL6. ³² However, since IL6_-6331T/C is in low LD with IL6_-174, our finding is not likely to be explained by these new functional data.

If *IL6* SNPs are not related to IL6 levels, then what is the basis for their association with FEV₁ decline and COPD? One possible explanation is that the association is truly driven via local pulmonary IL6 expression or that it is driven by serum IL6 levels but that the variability and lability of serum IL6 levels obscures this relationship; FEV₁ may reflect the average

Table 4 Association of serum concentrations of interleukin 6 (IL6) and IL6 genotypes (linear regression*)

		IL6 level (In IL6 (pg/ml))				
SNP	Genotype	N	Coefficient (SE)	p Value		
	II	514				
<i>IL6</i> 1479	ID	681	-0.011 (0.046)			
(rs2069825)	DD	229	-0.080 (0.063)	0.424†		
<i>IL6</i> 1363	GG	1185				
(rs2069827)	GT+TT	234	0.000 (0.057)	0.997†		
	GG	483				
<i>IL6</i> 174	GC	691	0.013 (0.047)			
(rs1800795)	CC	255	-0.056 (0.061)	0.486†		
	CC	234				
<i>IL6</i> _1754	CG	234	0.000 (0.048)			
(rs2069840)	GG	72	-0.030 (0.064)	0.820‡		
	GG	169				
<i>IL6</i> _1889	GT	261	0.013 (0.044)			
(rs1554606)	TT	110	-0.057 (0.054)	0.542‡		
	AA	431				
<i>IL6</i> _3331	AG	689	0.015 (0.049)			
(rs2069845)	GG	293	-0.020 (0.060)	0.819†		
	AA	685				
<i>IL6</i> _5909	AG	593	0.012 (0.044)			
(rs1818879)	GG	137	-0.025 (0.074)	0.877†		

SNP, single nucleotide polymorphism.

^{*}Genotyped in the LHS.

[†]Genotyped in the NETT-NAS.

[‡]Adjustment for confounding factors such as age, gender, pack-years of smoking and research centre.

[§]As the NAS controls were uniformly male smokers with normal lung function, the models were adjusted for age and pack-years.

[¶]The p values were from a dominant genetic model because the minor allele frequency of this SNP was very low.

^{*}p Values were from genotype-based analysis (co-dominant genetic models) except for IL6_-1363 where p values were from a dominant genetic model because the minor allele frequency for this SNP was very low.

[†]Adjusted for body mass index, age, gender, pack years of smoking and smoking status.

[‡]Adjusted for body mass index, age, gender and pack years of smoking.

IL6 levels and thus the degree of lung inflammation over the years of the study. In addition, the SNPs could influence IL6 levels and thus lung inflammation during exacerbations but not the constitutive levels during stable periods. IL6 is a pleiotropic cytokine which also modulates expression of many other genes.³³ It may be that it is the effect of the *IL6* variants on these genes that is the underlying mechanism for the associations we observed.

How can we explain the observation that *IL6* SNPs were not associated with baseline FEV $_1$ in the LHS but were associated with the presence of COPD in the NETT-NAS study? The mean age of the LHS participants was 48 years compared with 68 years for the participants in the NETT-NAS study. Baseline FEV $_1$ at age 48 is influenced both by maximal attained FEV $_1$ at about 25 years of age and by the rate of decline in lung function after the age of 25. However, the relative contribution of rate of decline in lung function will be much greater by age 68 than at age 48. Thus, FEV $_1$ at age 68 in the NETT-NAS participants is likely to largely reflect the rate of decline of lung function during their long smoking history, whereas there is likely to be a weaker relationship between FEV $_1$ decline and baseline lung function at age 48.

Compared with previous studies, the strengths of this study include larger sample size and good power. This sample size has adequate power to detect common genetic risk variants as shown in our previous power analyses; for example, it has 80% power to detect a relative risk of 2.0 when the frequency of the risk factor is 10% or above.²²

There are several potential limitations of this study. First, population stratification could have led to false positive results. However, it has been reported that significant false positive associations are unlikely to arise from population stratification in the non-Hispanic white population, especially in well-designed, moderately-sized, case-control studies such as ours.35 In addition, there was no significant evidence of population stratification in the NETT-NAS cases and controls. 17 Second, false positive results might have arisen from multiple comparisons. However, the consistent results in the NETT-NAS replication study make false positive results unlikely. Third, we have not identified the causal SNP for the associations. The identification of a novel functional SNP IL6 -6331T/C (rs10499563), which has low LD with IL6 -174G/C (rs1800795) with r² of 0.169 in the CEU HapMap database, indicates that the control of IL6 transcription is likely to be complex.32 We cannot exclude the possibility that SNPs other than the IL6 -174G/C are also causal SNPs. Finally, serum IL6 levels were measured at year 5 of the LHS, so it may not be appropriate to link IL6 levels at year 5 with the baseline FEV₁ as well as the rate of decline of FEV₁ during 5-year follow-up.

In summary, we report associations of *IL6* variants with rate of decline of lung function and with smoking-induced COPD.

Funding: This work was supported by grants from the Canadian Institutes of Health Research and National Institutes of Heath Grant 5R01HL064068-04. The Lung Health Study was supported by contract N01-HR-46002 from the Division of Lung Diseases of the National Heart, Lung, and Blood Institute. The NETT Genetics Ancillary Study was supported by National Institutes of Health grants HL075478 and HL71393. The Normative Aging Study is supported by the Cooperative Studies Program/ERIC of the US Department of Veterans Affairs and is a component of the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC). J-QH is the recipient of a Michael Smith Foundation for Health Research Fellowship and Izaak Walton Killam Memorial Scholarship Award. MGF was supported by HL007427. DLD was supported by HL072918. AJS is the recipient of a Canada Research Chair in genetics and a Michael Smith Foundation for Health Research Senior Scholar Award.

Competing interests: None.

REFERENCES

- Donaldson GC, Seemungal TA, Patel IS, et al. Airway and systemic inflammation and decline in lung function in patients with COPD. Chest 2005;128:1995–2004.
- Walston JD, Fallin MD, Cushman M, et al. IL-6 gene variation is associated with IL-6 and C-reactive protein levels but not cardiovascular outcomes in the Cardiovascular Health Study. Hum Genet 2007:122:485–94.
- Yende S, Waterer GW, Tolley EA, et al. Inflammatory markers are associated with ventilatory limitation and muscle dysfunction in obstructive lung disease in well functioning elderly subjects. *Thorax* 2006;61:10–6.
- Wedzicha JA, Seemungal TA, MacCallum PK, et al. Acute exacerbations of chronic obstructive pulmonary disease are accompanied by elevations of plasma fibrinogen and serum IL-6 levels. Thromb Haemost 2000;84:210–5.
- Yende S, Tuomanen El, Wunderink R, et al. Preinfection systemic inflammatory markers and risk of hospitalization due to pneumonia. Am J Respir Crit Care Med 2005;172:1440–6.
- Kuhn C III, Homer RJ, Zhu Z, et al. Airway hyperresponsiveness and airway obstruction in transgenic mice. Morphologic correlates in mice overexpressing interleukin (IL)-11 and IL-6 in the lung. Am J Respir Cell Mol Biol 2000;22:289–95.
- Majello B, Arcone R, Toniatti C, et al. Constitutive and IL-6-induced nuclear factors that interact with the human C-reactive protein promoter. Embo J 1990;9:457–65.
- Aronson D, Roterman I, Yigla M, et al. Inverse association between pulmonary function and C-reactive protein in apparently healthy subjects. Am J Respir Crit Care Med 2006;174:626–32.
- Shaaban R, Kony S, Driss F, et al. Change in C-reactive protein levels and FEV(1) decline: a longitudinal population-based study. Respir Med 2006;100:2112–20.
- Fishman D, Faulds G, Jeffery R, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 1998;102:1369–76.
- Seifart C, Dempfle A, Plagens A, et al. TNF-alpha-, TNF-beta-, IL-6-, and IL-10promoter polymorphisms in patients with chronic obstructive pulmonary disease. Tissue Antigens 2005;65:93–100.
- Córdoba-Lanús E, de-Torres J-P, López-Aguilar C, et al. Association of IL-6 gene polymorphisms and COPD in a Spanish population. Respir Med 2008;102:1805–11.
- He JQ, Burkett K, Connett JE, et al. Interferon gamma polymorphisms and their interaction with smoking are associated with lung function. Hum Genet 2006;119:365–75.
- He JQ, Connett JE, Anthonisen NR, et al. Glutathione S-transferase variants and their interaction with smoking on lung function. Am J Respir Crit Care Med 2004;170:388– 94
- He JQ, Connett JE, Anthonisen NR, et al. Polymorphisms in the IL13, IL13RA1, and IL4RA genes and rate of decline in lung function in smokers. Am J Respir Cell Mol Biol 2003;28:379–85.
- He JQ, Ruan J, Connett J, et al. Antioxidant gene polymorphisms and susceptibility to a rapid decline in lung function in smokers. Am J Respir Crit Care Med 2002;166:323–8.
- Celedon JC, Lange C, Raby BA, et al. The transforming growth factor-beta1 (TGFβ1) gene is associated with chronic obstructive pulmonary disease (COPD). Hum Mol Genet 2004;13:1649–56.
- Hersh CP, Demeo DL, Lazarus R, et al. Genetic association analysis of functional impairment in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006;173:977–84.
- Allison DB, Heo M, Schork NJ, et al. Extreme selection strategies in gene mapping studies of oligogenic quantitative traits do not always increase power. Hum Hered 1998;48:97–107.
- Ernster VL. Nested case-control studies. Prev Med 1994;23:587–90.
- 21. Lander ES. The new genomics: global views of biology. Science 1996;274:536–9.
- Tanaka G, Sandford AJ, Burkett K, et al. Tumour necrosis factor and lymphotoxin A polymorphisms and lung function in smokers. Eur Respir J 2006;29:34–41.
- Broekhuizen R, Grimble RF, Howell WM, et al. Pulmonary cachexia, systemic inflammatory profile, and the interleukin 1beta -511 single nucleotide polymorphism. Am J Clin Nutr 2005;82:1059–64.
- He JQ, Shumansky K, Connett JE, et al. Association of genetic variations in the CSF2 and CSF3 genes with lung function in smoking-induced COPD. Eur Respir J 2008;32:25–34.
- He JQ, Shumansky K, Zhang X, et al. Polymorphisms of interleukin-10 and its receptor and lung function in COPD. Eur Respir J 2007;29:1120-6.
- Joos L, McIntyre L, Ruan J, et al. Association of IL-1beta and IL-1 receptor antagonist haplotypes with rate of decline in lung function in smokers. Thorax 2001;56:863–6.
- Sandford AJ, Chagani T, Weir TD, et al. Susceptibility genes for rapid decline of lung function in the Lung Health Study. Am J Respir Crit Care Med 2001;163:469–73.
- Terry CF, Loukaci V, Green FR. Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J Biol Chem 2000;275:18138–44.
- Huth C, Illig T, Herder C, et al. Joint analysis of individual participants' data from 17 studies on the association of the IL6 variant -174G > C with circulating glucose levels, interleukin-6 levels, and body mass index. Ann Med 2008:1–21.
- Sothern RB, Roitman-Johnson B, Kanabrocki EL, et al. Circadian characteristics of circulating interleukin-6 in men. J Allergy Clin Immunol 1995;95:1029–35.
- Samuel JM, Kelberman D, Smith AJ, et al. Identification of a novel regulatory region in the interleukin-6 gene promoter. Cytokine 2008;42:256–64.

Chronic obstructive pulmonary disease

- Smith AJ, D'Aiuto F, Palmen J, et al. Association of serum interleukin-6 concentration with a functional IL6 -6331T>C polymorphism. Clin Chem 2008;54:841–50.
- Wegrzyn P, Jura J, Kupiec T, et al. A search for genes modulated by interleukin-6 alone or with interleukin-1beta in HepG2 cells using differential display analysis. Biochim Biophys Acta 2006;1762:319–28.
- Tager IB, Segal MR, Speizer FE, et al. The natural history of forced expiratory volumes. Effect
 of cigarette smoking and respiratory symptoms. Am Rev Respir Dis 1988;138:837–49.
- Ardlie KG, Lunetta KL, Seielstad M. Testing for population subdivision and association in four case-control studies. Am J Hum Genet 2002;71:304–11.
- Crapo RO, Morris AH, Gardner RM. Reference spirometric values using techniques and equipment that meet ATS recommendations. Am Rev Respir Dis 1981;123:659–64.

Lung alert

Vitamin D levels are inversely proportional to the "common cold"

The role of vitamin D in bone metabolism and associated pathology is well established. This paper is the first high-powered population study to demonstrate an inverse relationship between vitamin D levels and recent upper respiratory tract infection (URTI). Vitamin D levels were measured in 18 883 participants in the Third National Health and Nutrition Examination Survey in the USA and they were asked whether they had symptoms suggestive of an URTI in the preceding few days. The study was adjusted for diversity in age, sex, race, season, location, body mass index, smoking, asthma and chronic obstructive pulmonary disease (COPD); 24% of those with a vitamin D level <10 ng/ml had a recent URTI compared with 21% in those with levels of 10–<30 ng/ml and 17% in those with vitamin D levels >30 ng/ml. Perhaps the most important finding was that patients with asthma had an odds ratio of 5.67 of recent URTI with vitamin D levels <10 ng/ml compared with those with vitamin D levels >30 ng/ml, and for COPD the odds ratio was 2.26.

The most important application of this research may be in those with asthma or COPD in whom an URTI may lead to lower respiratory tract infections or more life-threatening complications such as pneumonia. One of the limitations of this paper is that it is not clear whether vitamin D is a surrogate of poor nutrition in the context of chronic lung disease, and therefore susceptibility to URTI is due to that rather than pure vitamin D deficiency. More work is needed in the basic science of vitamin D and immunity which can then be translated to clinical trials.

Ginde AA, Mansbrach JM, Camargo CA. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. Arch Intern Med 2009;169:384–90.

W Thomas, R Quadery

Correspondence to: Dr W Thomas, F1 House Officer, Bedford Hospital, Bedfordshire, UK; william.thomas@bedfordhospital.nhs.uk

704 Thorax August 2009 Vol 64 No 8