mucus hypersecretion in non-eosinophilic asthma are not regularly assessed in asthma control questionnaires. This may explain why successful macrolide therapy improves asthma-related quality of life yet does not impact on asthma control score.

Will this approach be useful? Probably yes. Studies in respiratory epidemiology and other disciplines have found important relationships between circulating white cell count and mortality. Parenthetically, this cautions the need carefully to examine the specificity of the results, particularly in populations where other influences may alter blood cell numbers, for example ageing or unrelated exposures. Several other studies have related white cell count to respiratory outcomes such as atopy14 and, importantly, the effect of exposures.17 18 To date, the characterisation of the clinical phenotype of subjects in genetic studies has been limited, and this may partly explain the inconsistency between studies and the small size of the genetic effects that have been identified. I have long puzzled over how scientists can define a person’s genotype to the level of a single nucleotide yet accept a phenotype characterisation in the same individual that is as (im)precise as the answer to the question “Do you wheeze?” The solution to this problem does not lie in bigger and better gene machines that are sold with the promise of “personalised medicine”; it lies in better characterisation of the phenotype that can then be linked to genetic characterisation.

The use of circulating granulocyte counts is a simple yet effective way to give scientists access to better phenotype classification in large-scale studies. It is one of those observations that prompts responses like, “anyone can do that!”, or “I wish I’d thought of that!”. To which the reply might be, “Yes. So now lets make use of it”.

Competing interests: None.

REFERENCES
an extension of the original finding, which needs further replication itself to increase the likelihood that the reported association is real. Nevertheless, these studies, as well as failures to replicate, should be published to evolve a full picture of a gene’s possible effects. Much can be learned from these findings and, in the end, they may be even more important for our understanding of genetics and disease mechanisms in complex diseases than straightforward replication.

Blakey et al studied five positionally cloned genes, initially found in linkage and association studies in children. They now aimed to replicate associations with asthma, wheezing and IgE in their large British population sample. They found small but significant effects for polymorphisms in DPP10 and ADAM33 (and borderline for GPR154), with odds ratios of around 1.1 per allele.

Is this the final verdict on the role of these genes in asthma? Rather not. Although this is a large and well phenotyped cross-sectional and probably unbiased population sample, it is a snapshot in time. The individuals studied were born in 1 week of 1958 in Britain. It may be assumed that environmental factors were very different at the time these individuals developed their asthma compared with children growing up nowadays. Looking back on the second half of the 20th century we have witnessed rising prevalence rates for asthma, and fundamental changes in lifestyle, diet, and personal and meta-environments. It could very well be that asthma of today’s children and youth is the result of mechanisms different from those relevant for asthma development 50 years ago. However, when associations are found consistently across time, this could point to very basic and timeless asthma mechanisms. This is nothing but a hypothesis—but one to consider when indulging in replication studies such as this that look simple at first glance but may hold more food for thought than expected.

Competing interests: None.

REFERENCE

Change in smoking status after low-dose spiral chest CT screening for lung cancer: opportunity for smoking intervention

Matthew M Clark,1 James R Jett2,3

Several studies have examined the effectiveness of low-dose spiral chest CT scan screening for early detection of lung cancer. Currently, most patients with lung cancer are diagnosed at an advanced stage. Early detection of lung cancer could help reduce the high mortality rate associated with lung cancer. It is hoped that the advanced technology of this new screening procedure may prove to be comparable to the reduction in mortality associated with having the recommended mammographies for early detection of breast cancer.

However, unlike most cancers, lung cancer is associated with a specific behaviour—namely, smoking cigarettes. It has been proposed that informing cigarette smokers of negative lung cancer screening results could give them permission, licence or a “green light” to continue smoking. If a screening procedure leads to increased smoking rates, it is possible that any health benefits associated with early detection of lung cancer would be offset by an increase in the prevalence of lung cancer due to increased smoking rates.

Fortunately, several non-randomised screening programmes have examined this concern and, so far, negative screening results do not appear to increase smoking rates. For example, we found that CT screening results did not affect the smoking rates of 1475 adults with a smoking history of at least 20 pack-years at 1-year follow-up.2 Interestingly, in this same sample we found that three abnormal screens over a 3-year period promoted smoking abstinence (41.9%). Those with three negative screens still had a higher than expected quit rate (19.8%) over the 3 years.2

The study by Ashraf and colleagues in this issue of Thorax (see page 388) is unique in that participants were randomised to receive either CT screening or to not have any screening.3 A randomised study design helps to further understand the possible effects that lung cancer screening may have on smoking rates. The fact that the authors also found that the screening and control subjects both demonstrated a quit rate of almost 12% is further support of previous research findings from single-arm studies that negative screening results do not promote or encourage continued cigarette smoking. The study also demonstrates the strength of a randomised controlled trial, and showed that smoking cessation was equal in the two arms regardless of whether or not the subjects received CT screening. Without the control arm it would be possible mistakenly to attribute the successful smoking cessation to having CT screening.

What is striking is that the quit rate found in participants in CT screening—either in randomised trials or single-arm studies—is higher than expected. Participants usually have a 20 pack-year history of smoking so they are long-term addicted smokers. That almost 12% quit at 1 year in this study and that 14% quit at 1 year in our study shows that this is a population of smokers with a high motivation to quit smoking. Our attempt to take advantage of this teachable moment by enhancing smoking abstinence with either internet resources or written materials proved ineffective.4 It is our current opinion that more intensive, truly multi-disciplinary approaches are needed for smoking cessation. We therefore suggest that smoking cessation interventions that combine pharmacotherapy with nicotine counselling and use screening results to enhance motivation for quitting smoking may prove to be efficacious for this.
The art of replication

Michael Kabesch

Thorax 2009 64: 370-371
doi: 10.1136/thx.2008.105197

Updated information and services can be found at:
http://thorax.bmj.com/content/64/5/370

These include:

References
This article cites 1 articles, 1 of which you can access for free at:
http://thorax.bmj.com/content/64/5/370#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Asthma (1782)
Child health (843)
Molecular genetics (211)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/