

Orthopnoea and arm weakness

PULMONARY PUZZLE

A 70-year-old Caucasian man was transferred back to New Zealand from an Italian hospital having been admitted there 6 weeks earlier with acute dyspnoea. There was no associated cough or fever and, despite antibiotic treatment, he remained dyspnoeic at rest with persistent orthopnoea. His left shoulder had been weak for over 10 years but he had recently noticed weakness in the right shoulder and arm. He had moderate chronic obstructive lung disease secondary to smoking. On examination he had a short neck, with limited range of movement in all directions, and a body mass index of 32. His respiratory rate was 24/min, oxygen saturation 80% on air. The chest was mildly hyperinflated but expansion was dull to percussion with decreased breath sounds. There were no signs of pulmonary hypertension. Bilaterally, there was severe weakness in the shoulders (power grade 2/5 on the right, 1/5 on the left) and very mild weakness of arm flexion (power grade 5+/5). Tone was increased and reflexes brisk in all limbs. He was in asymptomatic urinary retention. An arterial blood gas on air was consistent with chronic type II respiratory failure (pH 7.41, Pco₂ 66 mm Hg, Po₂ 42 mm Hg, HCO₃⁻ 41 mmol/l); spirometric tests showed a 52% reduction in his vital capacity in the lying position compared with sitting (0.71 l to 1.46 l) and the chest radiograph showed bilateral loss of lung volume with elevated hemidiaphragms. A sniff test showed bilateral diaphragmatic paralysis without paradoxical movement and serum creatine kinase levels were normal. A CT scan showed moderate bibasal atelectasis only. MRI of the neck demonstrated extensive vertebral abnormalities in the cervical spine (fig 1).

QUESTION

What is the diagnosis and what further investigations are required?

See page 1069 for answers

H K Chen, D Jardine, L Becket

1 Department of Respiratory Medicine, Christchurch Hospital, Christchurch, New Zealand; 2 Department of General Medicine, Christchurch Hospital, Christchurch, New Zealand

ACKNOWLEDGEMENTS

We thank Tony Goh for his interpretation of the MRI studies and Grant Carroll for undertaking and interpreting the nerve conduction studies. The figure was prepared by The Medical Illustrations Department, Christchurch Hospital.

CONFLICT OF INTEREST: None.

PATIENT CONSENT: Obtained.

Thorax 2009;64:1031. doi:10.1136/thx.2009.121632
The scan showed synostoses of the C3/C4 and C5/C6/C7 vertebrae, consistent with Klippel-Feil syndrome. At C3/C4 the disc-osteophyse complex was compressing the adjacent cord, causing severe myelomalacia well above this level. Phrenic nerve dysfunction was demonstrated by normal bilaterally, reliably excluding lower motor neurone pathology. Bilateral diaphragmatic paralysis, demonstrated by fluoroscopic monitoring during the sniff test, was therefore secondary to interruption of the descending corticospinal pathways supplying the phrenic nerve cell bodies, most of which lie in the C4 neurome at the extensive area of myelomalacia above the cord lesion. This may initially have been unilateral and asymptomatic, progressing only to respiratory failure when the right side became involved. His ability to improve with conservative treatment may have been limited by underlying chronic obstructive airways disease and high body mass index.

Klippel-Feil syndrome is a congenital condition (incidence 1:40 000 births) of uncertain inherited characterised by synostosis of the cervical spine at one or multiple levels, involving the vertebral bodies, facet joints and posterior arches. The neck may be short and webbed with restricted movement and the hairline low. Associated conditions include other musculoskeletal deformities, deafness, heart defects and genitourinary abnormalities. Neurological complications secondary to spinal cord and nerve root compression may occur in childhood or later. The differential diagnosis of bilateral diaphragmatic paralysis includes motor neurone disease, multiple sclerosis, cervical myelopathy secondary to degenerative spondylosis and spinal tumours. The rapid onset of his dyspnoea and absence of lower motor neurone pathology is against motor neurone disease. His dyspnoea has subsequently improved with conservative treatment.
Orthopnoea and arm weakness

H K Chen, D Jardine and L Beckert

Thorax 2009 64: 1031
doi: 10.1136/thx.2009.121632

Updated information and services can be found at:
http://thorax.bmj.com/content/64/12/1031

These include:

References
This article cites 5 articles, 0 of which you can access for free at:
http://thorax.bmj.com/content/64/12/1031#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/