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ABSTRACT

Background: Non-tuberculous mycobacterial lung dis-
ease, most commonly caused by Mycobacterium avium
infection, tends to show variable disease progression, and
significant disease predictors have not been adequately
established.

Methods: Variable numbers of tandem repeats (VNTR)
were evaluated in 16 mycobacterial interspersed repeti-
tive unit (MIRU) loci from M avium isolates cultured from
respiratory specimens obtained from 2005 to 2007.
Specifically, the association between VNTR profiles and
disease progression was assessed.

Results: Among the 37 subjects who provided positive
respiratory cultures for M avium during the 2005-6
period, 15 subjects were treated within 10 months
following a microbiological diagnosis of progressive M
avium lung disease. Nine subjects underwent long-term
follow-up (>24 months) without treatment for stable M
avium lung disease. Based on a neighbour-joining cluster
analysis used to classify M avium-positive subjects
according to the VNTR profile, subjects with progressive
versus stable lung disease were found to be grouped
together in distinct clusters. Further analysis using logistic
regression modelling showed that disease progression
was significantly associated with the genetic distance of
the M avium isolate from an appropriately selected
reference (age-adjusted odds ratio 1.95; 95% confidence
interval 1.16 to 3.30; p = 0.01 for the most significant
model). A best-fit model could be used to predict the
progression of M avium lung disease when subjects from
the 2005-6 period were combined with those from 2007
(p=0.003).

Conclusion: Progressive lung disease due to M avium
infection is associated with specific VNTR genotypes of M
avium.

Non-tuberculous mycobacterial (NTM) lung dis-
ease is a common chronic pulmonary pathology.
NTM has attracted clinical attention owing to
increases in its incidence over the past several
decades  in  non-susceptible  populations.
Specifically, NTM is predominantly observed in
postmenopausal women and in susceptible popula-
tions such as patients with AIDS or cystic
fibrosis."* Among the NTM species most often
encountered in clinical settings, Mycobacterium
avium is the most frequent and significant cause
of pulmonary NTM infection’* M avium is
common in many environments including water
and soil, and the diagnosis of M avium lung disease
is based on clinical presentation (radiographic
appearance and microbiological features).®
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Even after a diagnosis of M avium lung disease
has been established, important and unresolved
questions remain regarding treatment. These ques-
tions include whether the patient requires immedi-
ate  treatment  with  macrolide-containing
multidrug therapy or whether the start of treat-
ment can be delayed.'* While immediate therapy is
recommended for fibrocavitary M avium lung
disease owing to progressive lung destruction, a
more prevalent form of M avium lung disease
termed “nodular bronchiectatic disease” tends to
show variable disease progression. For example,
one patient may show indolent stable lung disease
such that a potentially toxic and expensive therapy
is withheld, while another patient may display a
more progressive disease that warrants immediate
treatment.” * However, there are currently no
established predictors for disease progression. As a
result, close pre-therapeutic follow-up may be
necessary to distinguish between progressive and
stable VM avium lung disease.” ®

The present study evaluates whether molecular
typing of M avium isolates is informative for
predicting the progression of M avium lung disease.
Specifically, we investigated variable numbers of
tandem repeats (VNTR) in 16 mycobacterial
interspersed repetitive unit (MIRU) loci in M avium
clinical isolates. Our data demonstrate that specific
VNTR profiles are related to the likelihood of A
avium lung disease progression, thus allowing us to
predict disease progression by examining the
genetic divergence of M avium isolates.

METHODS

Study population

The study included 37 subjects who had visited the
Pulmonary Medicine Clinic of the Tohoku
University Hospital, a referral hospital in Sendai,
between January 2005 and December 2006.
Patients who had provided respiratory cultures
positive for M avium were chosen for the study.
Respiratory specimens yielding positive cultures
included expectorated sputum samples and bron-
chial washes of bronchoscopic samples. Subjects
who were culture-positive for M avium were
classified as having M avium lung disease based
on clinical diagnostic criteria, including pulmonary
symptoms and radiographic findings. Otherwise,
the culture-positive subjects were classified as not
having M avium lung disease. “False” positive
samples may have been the result of transient
infection or environmental contamination of the
respiratory specimens.” To validate the logistic
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regression model, we also evaluated eight subjects with lung
disease that yielded positive cultures for M avium during 2007.

The clinical and microbiological factors responsible for the
progression of M avium pulmonary infection were also
examined. Disease progress was determined by observing
patients with A avium lung disease until the start of
antimycobacterial treatment (after the culture-proven diagno-
sis). During the observation period the patients were evaluated
at least several times a year for exacerbation of pulmonary
symptoms, chest radiograph features and microbiological
findings. Specifically, we determined whether the condition
was progressive (treatment required within 12 months of
diagnosis) or stable (treatment delayed until after 12 months).
Data were excluded from all analyses if unrelated death
occurred during the observation period. A patient with A
avium-associated hypersensitivity-like lung disease (ie, “hot tub
lung”) was also excluded owing to the unique clinical features
of both lung inflammation and infection.” **

Mycobacterial genotyping

M avium isolates were grown on Middlebrook 7H10 agar with
OADC enrichment (BD Diagnostics, Sparks, Maryland, USA)
for 3-4 weeks at 37°C under 5% CO,. The mycobacterial mass
was placed in a microcentrifuge tube containing 200 pl
InstaGene matrix (Bio-Rad Laboratories, Hercules, California,
USA) and DNA was extracted according to the manufacturer’s
instructions. Using the DNA template (2 pl) and Tag DNA
polymerase (1.25 U, Takara Shuzo, Kyoto, Japan), 16 MIRU loci
were amplified in a total volume of 25 pl with primers specific
for sequences flanking each locus (1 pM of each primer, see
table S1 in the online supplement).'*'® The amplification profile
consisted of 5 min at 95°C followed by 36 cycles of 10 s at 98°C,
30 s at 68°C and 1 min at 72°C. The polymerase chain reaction
(PCR) products (5 pl) were run on a 2.5% agarose gel and
stained with 0.5 pg/ml ethidium bromide. The size of each
amplicon was estimated using the ChemiDoc XRS system (Bio-
Rad Laboratories). The number of repeat units was determined
in 16 MIRU loci (ie, the VNTR profile) for each M avium isolate.

Clustering analysis

The diversity of VNTR profiles between each set of M avium
clinical isolates was assessed using the Manhattan distance. The
Manhattan distance between A avium isolates Ma-x and Ma-y
was calculated using the following formula:

16
z Ixn_ynl
n=1

where x,, and y,, are the number of repeat units in the nth MIRU
locus, MATR-#. The genotypic diversity of M avium isolates was
analysed using a neighbour-joining algorithm in the PHYLIP
software (Version 3.67) for clustering."” ** Branch support was
determined using the bootstrap method with 1000 replicates of
a randomly resampled data set. The graphic phylogenetic
distribution was drawn using the NJplot software for MS
Windows."

Statistical analysis

Comparisons of clinical characteristics between study groups
were performed using the Fisher exact test for categorical
variables and the unpaired Student ¢ test for continuous variables.
The Manhattan distance of M avium isolates from a reference
point was compared between patients with progressive disease
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and those with stable disease by logistic regression analysis. The
results of all models are reported as age-adjusted odds ratios (ORs)
with 95% confidence intervals (CI). The probability of disease
progression was calculated using the logistic regression model
with M avium isolate Ma-31 as the reference. The two study
groups were examined using Mann-Whitney non-parametric
comparison tests; p values of <0.05 were considered to be
statistically significant. All analyses were performed using
StatView software Version 5.0 (SAS Institute, Cary, North
Carolina, USA).

RESULTS

Characterisation of subjects

Based on sputum specimens or bronchial washes, a total of 37
M avium-positive subjects were identified from 2005-6. Data
regarding demographic information, clinical types of M avium
lung disease, pretreatment observation period, culture-negative
period after initiating treatment and the medical history of each
subject are presented in table 1 and summarised in table 2. Of
the 37 subjects whose respiratory cultures were positive for /]
avium, 11 showed no radiographic findings (including chest CT
scans) for A avium lung disease. These 11 subjects were
therefore excluded from the study. The remaining 26 subjects
met the clinical criteria for a diagnosis of M avium lung disease
including fibrocavitary lung disease (three subjects), nodular
bronchiectatic lung disease (22 subjects) and hypersensitivity-
like lung disease (one subject). The proportion of patients with
a medical history of pulmonary disease was higher in the group
without M avium lung disease than the group with M avium
lung disease. In contrast, the two groups did not differ with
respect to age at positive culture or the proportion of men and
women (lung disease vs no lung disease: age, p=0.20; sex,
p = 0.06; medical history, p<<0.001; table 2).

In patients with M avium lung disease, 15 subjects were
treated within 10 months of microbiological diagnosis owing to
the progression of M avium lung disease and treatment was
withheld for more than 24 months in nine subjects owing to
stable M avium lung disease. Two subjects with M avium lung
disease were excluded from the analyses owing to censored
observation or unique clinical manifestations such as hypersen-
sitivity-like lung disease. Demographic and clinical variables
were similar in M avium-infected patients with progressive or
stable lung disease (progressive disease vs stable disease: age,
p = 0.44; sex, p = 0.12; clinical feature, p = 0.27; medical history,
p = 0.99; table 2).

Genotyping and clustering analysis of M avium isolates

To assess the association between mycobacterial genotype and
disease progression, we determined the VNTR profiles of each
M avium isolate by evaluating the numbers of repeat units in 16
MIRU loci (fig 1A). The VNTR profiling data for 40 M avium
isolates were obtained from 37 subjects; subjects 2, 13 and 22
provided respiratory specimens containing two A avium isolates
with distinct VNTR profiles: Ma-2a/-2b, Ma-13a/-13b and Ma-
22a/-22b, respectively (fig 1B).

Genotypic diversity in VNTR profiles was calculated as the
Manhattan distance between each pair of M avium isolates and
analysed using a neighbour-joining algorithm. In the phyloge-
netic tree (showing relationships among VNTR profiles), M
avium clinical isolates were grouped into three major clusters
designated as follows: cluster A including 12 isolates, cluster B
including 12 isolates and cluster C including 16 isolates (fig 2).
The branches in cluster C were supported by bootstrap values of
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Table 1 Subjects with positive respiratory cultures for Mycobacterium avium

Age at positive Observation period before  Culture-negative period
Subject no culture (years) Sex Clinical feature  treatment (months) after treatment (months) Relevant medical history
1 56 F NB >26 NA Dialysis
2 46 M FC 1 >7 Hypertension
3 73 F NB 3 >19 None
4 59 F NB 1 9 None
5 54 F NB >31 NA None
6 66 F NB 4 4 Hyperthyroidism
7 78 M - NA NA Lung cancer
8 72 M NB >5* NA Lung cancer
9 44 F NB 63 >4 Hyperthyroidism
10 64 F NB 1 1 None
1 63 F NB >32 NA Bronchiectasis
12 4 M - NA NA Bronchial asthma
13 74 M NB 3 >31 Lung cancer
14 47 M - NA NA Alveolar proteinosis
15 69 F NB >25 NA Rheumatoid arthritis
16 62 F NB >50 NA None
17 55 F - NA NA Alveolar proteinosis
18 51 F NB 1 >28 None
19 53 F NB 3 1 None
20 59 F NB 1 49 None
21 71 M - NA NA Lung cancer
22 40 M FC 2 7 None
23 51 F NB 10 >36 Hypertension
24 70 F NB 1 >3 Hypertension
25 60 F - NA NA Lung cancer
26 60 M FC 1 40 Bronchiectasis
27 50 F NB >24 NA None
28 46 F NB 1 18 None
29 79 F - NA NA Lung cancer
30 56 M NB 1 19 None
31 61 M - NA NA Lung cancer
32 58 F NB >30 NA Periarteritis nodosa
33 76 M - NA NA Lung cancer
34 34 F NB >29 NA Goitre
35 54 M - NA NA Pulmonary cyst
36 66 M HP NA NA None
37 63 F - NA NA Lung cancer

FC, fibrocavitary lung disease; HP, hypersensitivity-like lung disease; NA, not applicable; NB, nodular bronchiectatic lung disease; —, no M avium lung disease.
*Follow-up was terminated due to lung cancer-related death.

Table 2 Demographic and clinical characteristics of subjects

M avium lung disease (n = 24)*

M avium lung No M avium lung
disease disease Progressive disease  Stable disease
Characteristic (n = 26) (n=11) p Value (n=15) (n=9) p Value
Mean (SD) age at positive culture (years) 58 (10) 63 (13) 0.20 58 (10) 54 (11) 0.44
Male sex, n (%) 7(27) 7 (64) 0.06 5 (33) 0(0) 0.12
Clinical feature, n (%) 0.27
FC 3 (11) NA 3(20) 0(0)
NB 22 (85) NA 12 (80) 9 (100)
HP 1(4) NA NA NA
History of pulmonary disease, n (%) 4 (15) 11 (100) <0.001 2 (13) 1(11) 0.99
VNTR cluster, n (%)}
Cluster A 8 (30) 4 (36) 0.99 2 (13) 6 (67) 0.02
Cluster B 9 (35) 2 (18) 0.44 5 (33) 3(33) 0.99
Cluster C 9 (35) 5 (46) 0.7 8 (54) 0(0) 0.01

FC, fibrocavitary lung disease; HP, hypersensitivity-like lung disease; NA, not applicable; NB, nodular bronchiectatic lung disease; VNTR, variable numbers of tandem repeats.
*Patients with progressive versus stable Mycobacterium avium lung disease were defined as those treated within 12 months of diagnosis versus those treated after 12 months,
respectively. Two patients (subjects 8 and 36) who were not classifiable using the established criterion were excluded from the analysis.

FThe VNTR cluster is defined in fig 2.
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Figure 1 Variable numbers of tandem A
repeats (VNTR) profiling of ' q, o ,u H 0 A D .9 '\ ’\"-" NN
Mycobacterium avium clinical isolates. Q‘" &7 QR QT QA L «Q' &Q" & <& «Q' 'Q?" Q@‘

(A) A representative result of the VNTR
profile of M avium. The genomic DNA of
M avium isolated from subject 3 was
amplified with primers for 16 MIRU loci
(MATR-1 to MATR-16) using PCR. The
PCR products were resolved on a 2.5%
agarose gel with a size marker and
stained with ethidium bromide. From the
estimated size of the PCR product, the
number of repeat units was calculated.
(B) VNTR profiles of 40 clinical isolates of
M avium. The numbers of tandem repeat
units at 16 MIRU loci are shown for each
M avium isolate. Two different M avium
isolates, based on the VNTR profiles,
were cultured from respiratory samples
collected from subjects 2, 13 and 22 and
are referred to as Ma-2a/-2b, Ma-13a/-
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27-84%, whereas clusters A and B were interspersed with
branches of low bootstrap support (<10%). Distinct isolates
cultured from one subject were located close to one another on
the genotypic distribution and classified into the same cluster
(ie, Ma-2a/-2b in cluster C, Ma-13a/-13b in cluster B and Ma-
22a/-22b in cluster C). From these observations, all 37 subjects
who provided respiratory specimens positive for M avium were
assigned to one of the three VNTR clusters.

As summarised in table 2, M avium-infected patients with
progressive or stable lung disease were more likely to be grouped
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MATR MATR MATR MATR MATR MATR MATR MATR MATR MATR MATR MATR MATR MATR MATR MATR
-1 -2 -3

-4 -3 -6 -7 -B -0 -1 -13 0 -14 0 15 —16
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in cluster C or cluster A, respectively (progressive vs stable
disease: cluster A, p=0.02; cluster B, p=0.99; cluster C,
p = 0.01). Subjects without M avium lung disease did not differ
significantly from those with M avium lung disease based on the
VNTR profile classification (lung disease vs no lung disease:
cluster A, p=0.99; cluster B, p=0.44; cluster C, p=0.71;
table 2). These data suggest that A avium genotypes are
associated with the progression of Al avium lung disease;
however, isolate genotypes did not significantly predict the
presence or absence of lung disease.

Thorax 2009;64:901-907. doi:10.1136/thx.2009.114603
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Cluster C

Cluster A

Cluster B

A Prograssive M. avium lung disease
O Stable M. avium lung disease

< Other M. avium lung disease

x No M. avium lung disease

AMa-13b
AMa-24

Figure 2 Cluster analysis of Mycobacterium avium clinical isolates
based on variable numbers of tandem repeats (VNTR) profiles. Based on
the VNTR profile data for 40 M avium isolates, the Manhattan distance
between each pair of isolates was calculated and analysed using a
neighbour-joining algorithm. The phylogenetic distribution of M avium
from subjects with progressive M avium lung disease, stable M avium
lung disease, other M avium lung disease and no M avium lung disease
is shown as a radial dendrogram. Progressive or stable M avium lung
disease is defined as described in table 2. The three major branches of V/
avium are designated as clusters A, B and C. Numbers along the
branches denote bootstrap support as percentages of 1000 replicate
data sets (shown only for values greater than 10). The scale bar
indicates genetic distance.

Risk of progression according to the genotypic diversity of M
avium

The genetic relevance of mycobacteria to the clinical course of
M avium lung disease allows for the use of logistic regression
analysis. We selected one A avium isolate as a reference to
evaluate the Manhattan distance of each M avium isolate and
therefore determine the association between genotype and
disease progression. Among the 40 M avium isolates examined,
significant associations with progressive lung disease were
found for 12 isolates including Ma-1, -5, -6, -7, -8, -9, -15, -27,
-31, -32, -35 and -37 (age-adjusted ORs, 1.26-4.10; p=0.01-
0.04). In particular, the genetic distance of each M avium clinical
isolate from Ma-31 was associated with the highest likelihood of
disease progression (age-adjusted OR for subjects with progres-
sive M avium lung disease vs those with stable M avium lung
disease 1.95; 95% CI 1.16 to 3.30; p=0.01).

Finally, we sought to evaluate the sensitivity and specificity
of the regression model using Ma-31 as a reference. The purpose
of the evaluation was to assess our ability to distinguish
subjects with progressive M avium lung disease from those with
stable M avium lung disease. In an effort to improve the
analysis, we examined additional VNTR profiles of M avium
isolates obtained in 2007 from eight subjects (four subjects with

Thorax 2009;64:901-907. doi:10.1136/thx.2009.114603

progressive disease and four with stable disease), and combined
the data with that of subjects sampled from 2005 to 2006 (due
to small sample size). Based on the logistic regression model, we
found that subjects with progressive M avium lung disease had a
significantly increased probability of disease progression com-
pared with those with stable M avium lung disease (mean (SD)
0.77 (0.19) vs 0.30 (0.38), p =0.003; fig 3). On the basis of our
criterion (probability of disease progression >0.5) for the
positive prediction of progressive M avium lung disease, 15 of
19 subjects with progressive M avium lung disease were positive
(sensitivity 79%) and 10 of the 13 subjects with stable M avium
lung disease were negative (specificity 77%).

DISCUSSION
Little is known regarding the factors that determine the clinical
course of M avium lung disease. It is assumed, but not proven,
that mycobacterial virulence and/or host predisposition influ-
ence disease progression.”” Based on the assumption that the
progression of M avium lung disease depends, at least in part, on
the M avium genotype isolated from the patient, we hypothe-
sised that VNTR-based genotyping of M avium isolates would
be a useful strategy for predicting disease progression. The
observations gathered in the present study are consistent with
this hypothesis. The distribution of M avium clinical isolates, as
determined by VNTR profiles, demonstrates the existence of
three clusters; M avium isolates from progressive lung disease and
those from stable lung disease tend to be clustered differently. We
then assessed the association between mycobacterial genotypes
and disease progression of M avium lung disease by means of a
logistic regression analysis. We found that the genetic distance
calculated using Ma-31 as a reference was associated with the
most significant age-adjusted ORs for disease progression. Lastly,
a best-fit model was evaluated for its ability to predict the risk of
disease progression in subjects with A avium lung disease.

Important issues yet to be addressed in the clinical area of
NTM disease include therapeutic decisions regarding when to
start treatment. Currently, no consensus exists among experts
with respect to the treatment of patients with M avium lung
disease, particularly the prevalent nodular bronchiectatic type.
The clinical practice guidelines for NTM diseases were recently
published by the American Thoracic Society (ATS) and the
Infectious Diseases Society of America (IDSA);* however, this
additional information has not resolved the aforementioned
issues. According to the guidelines, there are complicated
reasons for the lack of a consensus: (1) unlike fibrocavitary
lung disease which is known to be generally progressive within a
short time frame, the more predominant nodular bronchiectatic
lung disease tends to show slower progression; (2) even with the
more indolent bronchiectatic form of the disease, antimyco-
bacterial treatment should be considered to prevent clinical
deterioration and death; and (3) drug therapy for M avium
disease involves long-term multidrug treatment (eg, 12 months
or longer) with a relatively high risk of adverse drug reactions
and/or toxicities, so the treatment of Al avium disease seems
worse than the disease for a patient with minimal symptoms
and radiographic changes.®” ® 22

It is therefore necessary to identify a clinical factor that is
associated with disease progression to predict which patients
with M avium lung disease are at the highest risk. In this
context, it was reported that 176 of 181 patients (97%) who had
two or more M avium complexes (MAC, including at least two
mycobacterial species, M avium and M intracellulare) in the
initial three sputum specimens collected following the onset of
MAC lung disease subsequently developed new chest radio-
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Figure 3 Estimates of Mycobacterium avium lung disease progression.
The probabilities of disease progression were calculated from the logistic
regression analysis according to the Manhattan distances of M avium
isolates from Ma-31. The results are shown for M avium isolates from
subjects with progressive or stable M avium lung disease. Horizontal
lines indicate mean values; p values were calculated using a Mann—
Whitney non-parametric comparison test.

graphic abnormalities.”® Although this report suggests that the
frequency of positive sputum cultures for MAC is related to
disease progression, the clinical value of this observation has not
been conclusively established owing to substantial methodolo-
gical limitations (accurate assessment of symptoms such as
frequency of culture-positive sputum is often complicated in
various clinical circumstances). Another study evaluated the
association between MAC isolated from sputum with the
prognosis of pulmonary MAC disease. This study showed that
MAC serotypes could be determined using thin layer chroma-
tography and mass spectrometry, and that patients with
serotype 4 M avium pulmonary infection were generally non-
responsive to antimycobacterial drug therapy. In addition,
patients with serotype 4 had a poorer prognosis than patients
with M avium organisms of other serotypes.”® These findings
suggest the benefit of surgery for some patients whose MAC
disease is selected as a drug-refractory infection by MAC
serotyping. The most significant limitation to the widespread
application of this method, however, is that highly sophisti-
cated experimental techniques that are generally unfamiliar to
standard clinical laboratories are required to determine MAC
serotypes. In addition, several typing methods have been used to
differentiate mycobacterium organisms including high-perfor-
mance liquid chromatography (HPLC) of myecolic acids, restric-
tion fragment length polymorphism (RFLP) profiling and
trinucleotide repeat sequence (TRS) analysis.” '* > Further
studies will be needed to assess the concordance between our
VNTR method and another typing approach.

In the present study we found a significant association between
PCR-based VNTR profiles of M avium isolates from patients with
pulmonary infections and the risk of developing lung disease that
requires drug treatment. These results suggest that VNTR profiles
of M avium isolates, determined by the widely prevalent PCR
method, may serve as a potential predictor of disease progression.
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The limitations of our study include the retrospective nature of
the analyses and the uncertainty regarding the molecular
mechanisms whereby the VNTR profile can discriminate between
M avium isolates relevant to disease progression. In this regard,
Hanekom et al reported that epidemiologically unrelated
Mycobacterium strains may be incorrectly linked together by using
the genetic distance of the VNTR profile® Despite these
limitations, our findings provide compelling evidence that A/
avium genotype rather than host predisposition is contributing to
the progression of pulmonary infection. Further investigation of
the M avium strains isolated in progressive and stable disease, such
as whole genome scanning of these strains, is warranted to
identify molecular factors responsible for the increased risk of
progressive M avium lung disease.
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Lung alert

Cetuximab: a new hope for advanced NSCLC

Advanced (stage IIIb/IV) non-small cell lung cancers (NSCLCs) are associated with poor survival
on current chemotherapy regimes. Epidermal growth factor receptor (EGER)-directed tyrosine
kinase inhibitors are second-line treatment options. This is the first study to investigate a
monoclonal antibody against the EGFR cetuximab as a potential first-line treatment option.

In this multinational open-label study across 155 centres, 1125 chemotherapy-naive patients
with advanced NSCLC and immunohistochemical evidence of EGFR expression were randomly
assigned to chemotherapy with cetuximab or chemotherapy alone. Patients previously treated
with monoclonal antibodies or EGFR-targeting drugs were excluded. The primary outcome was
overall survival. Secondary outcomes included progression-free survival, tumour response rate,

safety and quality of life analyses.

On an intention-to-treat analysis, cetuximab therapy was associated with greater median
survival than chemotherapy alone (11.3 vs.10.1 months), greater tumour response rates and a
longer time to treatment failure. These findings were independent of histological subtype and
other factors known to affect prognosis. No differences were reported between progression-free
survival, quality of life outcomes or treatment-related deaths. Infusion reactions with cetuximab

WEere rare.

The authors conclude that combination chemotherapy with cetuximab is a useful first-line
therapy for advanced NSCLC. However, changes in symptom score and optimum duration of
cetuximab treatment were not assessed. Unfortunately, it is likely that the benefit in overall
survival compared with the cost of cetuximab treatment will be an issue in cetuximab becoming

a first-line treatment option.

»  Pirker R, Pereira JR, Szczesna A, et al and the FLEX Study Team. Cetuximab plus chemotherapy in patients with advanced non-small-
cell lung cancer (FLEX): an open-label randomized phase Il trial. Lancet 2009;373:1525-31.
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