COPD, diagrams and traditions: time to move on?

Jørgen Vestbo

The non-proportional Venn diagram explaining the components of chronic obstructive pulmonary disease (COPD) has been a graphical “COPD evergreen” along the Fletcher-Peto curve ever since it was proposed by Snider. The diagram has very much been intended as a way of visualising the concepts behind the processes contributing to COPD, but over the last few years there has been a growing interest in quantifying the various components of the diagram. These studies have used registered administrative diagnoses or self-reported diagnoses with the possibilities that errors in diagnostic labelling may have introduced significant bias. In this issue of Thorax Marsh et al present a proportional Venn diagram based on clinical data, pulmonary function measurements and CT findings from an ongoing population study in New Zealand (see page 764).

Marsh et al found that asthma was a significant cause of COPD in their general population sample; 55% of patients with COPD fulfilled their criteria for asthma whereas 30% had questionnaire-derived chronic bronchitis and 32% had emphysema defined by CT or reduced transfer factor. The overwhelming—and somewhat surprising—impact of asthma on COPD is not substantially different from that found in the previous studies; nevertheless, it challenges our traditional views and deserves attention. In addition, a significant proportion of patients with COPD were never smokers (36% overall, ranging from 13% among COPD patients with emphysema to 58% among COPD patients with asthma).

The quick and easy interpretation of these findings is that asthma is the predominant cause of COPD and that we should stop viewing COPD as a disease closely related with smoking. For one thing, this would definitely change the view of COPD, as asthma—in contrast to complications of smoking—can hardly be said to be self-inflicted! However, as with most other simple views, the concept of COPD as mainly persistent asthma with an irreversible component is likely to be misleading.

First, COPD is defined simply as a post-bronchodilator forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC) ratio <0.7 and no known diagnosis of bronchiectasis or tuberculosis. This is quoted as being taken directly from current guidelines such as the GOLD guidelines, but the guideline actually has a section dealing with COPD and asthma, patients with overlapping features and the differences in underlying airway inflammation. Although the guideline does not come up with clear guidance on how to label these patients, it does not recommend that every patient with asthma with a post-bronchodilator FEV1/FVC ratio <0.7 should be labelled as having COPD.

Second, the criteria for asthma are equally questionable. Marsh et al use a doctor’s diagnosis of asthma or bronchodilator reversibility of >15%. Diagnostic labelling as a cause of bias may vary substantially from region to region and, at least in places other than New Zealand, patients with mild symptoms and airflow obstruction may be given an initial diagnosis of asthma even if the diagnosis after months of treatment with little effect on lung function turns out to be COPD. Also, the prevalence of asthma varies and is notoriously high in New Zealand. There is no doubt that asthma is characterised by variable airflow obstruction and therefore bronchodilator reversibility. There is at the same time no doubt that reversibility can be demonstrated in patients with COPD without any other features of asthma, and to most clinicians it seems intuitively wrong to state that these patients have asthma merely because of one measure of a feature of airflow obstruction that is known to be highly variable.

However, these points of criticism are unlikely to account for all of the findings in the paper by Marsh et al. It seems to have been a feature of COPD epidemiology that focus has to a high degree been on smoking as this is the major exposure relevant for COPD. This traditional approach has probably led to over-interpretation of the impact of smoking on COPD, as pointed out recently by the same authors. In a recent 25-year follow-up study we found that 9% of never smokers, 11% of ex-smokers and 51% of continuous smokers—all with normal lung function at baseline—developed COPD over a 25-year period. Nevertheless, whereas a clinician may be intrigued by the cause of COPD in the never smoker, he/she easily ascribes all COPD in smokers to the smoking habit despite the fact that a proportion of smokers would have had COPD even if they had not smoked. Data from the Burden of Lung Diseases programme have also clearly demonstrated a larger than traditionally expected prevalence of COPD among never smokers.

In a larger perspective, there are two areas where the findings from the study by Marsh et al could therefore potentially have implications. The findings come from epidemiology, and this research discipline often impacts on disease prevention. Here, the message is quite clear. First, smoking cessation is essential for many reasons, including the prevention of COPD. Second—and clear from the paper by Marsh et al—prevention of irreversible airflow obstruction includes better diagnosis, treatment and follow-up of asthma.

For the clinicians, however, the implications are probably less important. In the clinical setting, little time is usually spent on thinking about the components of COPD in general. Instead, the focus is on the individual patient, the patient’s clinical characteristics, and the choice of treatment and secondary/tertiary prevention for the patient. As part of this process the clinician will make his/her own evaluation of the presence of previous asthma and features of current asthma and take these into account when making clinical decisions. Asthma with not fully reversible airflow obstruction will often continue to be treated like asthma and there are data to support this clinical practice. For research there is also a take-home message from this study. There is currently huge interest in the development of biomarkers in COPD, often with the aim of identifying patient groups with different natural histories. Biomarkers are often thought of as substances measurable in blood, sputum or exhaled air, but the study by Marsh et al points out the value of clinicians’ evaluation as biomarkers for defining phenotypes of COPD and thus underscores the role of the clinician in this type of translational research.
What evidence could validate the definition of COPD?

Roberto de Marco

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of disability and death in both the developed and developing worlds, and it is largely underdiagnosed. While it is generally accepted that the ratio between forced expiratory volume in 1 s (FEV₁) and forced vital capacity (FVC) or slow vital capacity (SVC) is the most important measure that characterises airflow obstruction, there is still no consensus on what the best definition of COPD should be.

In an attempt to simplify the diagnosis of COPD, improve the detection of the disease in primary care and standardise methods to measure the prevalence of COPD in different countries, the Global Initiative for Chronic Obstructive Lung Disease (GOLD) has defined COPD as a post-bronchodilator FEV₁/FVC ratio <0.70. As the FEV₁/FVC ratio decreases with age, this fixed ratio has been criticised as it may overdiagnose the disease in elderly subjects and underdiagnose it in young adults. For this reason, the ATS/ERS guidelines on lung function testing propose using the lower limit of normality (LLN) instead of a fixed cut-off to define COPD. LLN is the lower fifth percentile of the frequency distribution of the FEV₁/FVC ratio in a healthy population of a given sex and age. The guidelines also point out that the SVC could be more accurate than FVC to diagnose airflow obstruction.

A hot debate between the supporters of the two different points of view is currently ongoing, as can be seen in scientific journals. As an epidemiologist I believe there could be sound reasons to support both approaches but, in my opinion, there is insufficient evidence to make one preferable to the other. The positive aspect of the GOLD definition is simplicity and, thanks to this, its use is quite widespread. It relies entirely on the opinions of clinical experts and assumes that an FEV₁/FVC ratio <0.70 is, “on average”, a good threshold to discriminate patients with clinically defined COPD from normal subjects. The LLN definition is in theory more rational; it is based on the statistical approach used to derive the reference (or “normal”) ranges for biological variables. It depends entirely on the accuracy of “reference equations” (to my knowledge, accurate national reference equations do not currently exist in many cases) and it assumes that (1) everyone outside the range is affected by COPD and (2) all patients affected by COPD are outside the range (in other words, the distribution of diseased and healthy people does not overlap).

The trait that the two approaches have in common is that the definition of the disease is based exclusively on a variable—the FEV₁/FVC (or FEV₁/SVC)—that is distributed along a continuum in the general population. Any definition of COPD based on a dichotomy of this

Correspondence to: Professor R de Marco, Unit of Epidemiology and Medical Statistics, Department of Medicine and Public Health, Strada le Grazie B 8, 37134 Verona, Italy; roberto.de_marco@univr.it

Competing interests: None.

References

COPD, diagrams and traditions: time to move on?

Jørgen Vestbo

Thorax 2008 63: 755-756
doi: 10.1136/thx.2007.092924

Updated information and services can be found at:
http://thorax.bmj.com/content/63/9/755

These include:

References
This article cites 12 articles, 6 of which you can access for free at:
http://thorax.bmj.com/content/63/9/755#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Asthma (1782)
- Health education (1223)
- Smoking (1037)
- Tobacco use (1039)
- Airway biology (1100)
- Bronchitis (235)
- Inflammation (1020)
- Lung function (773)
- TB and other respiratory infections (1273)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/