LETTERS

Endobronchial ultrasound guided transbronchial needle aspiration of mediastinal lymph nodes for lung cancer staging: a projected cost analysis

Endobronchial ultrasound guided transbronchial needle aspiration (EBUS-TBNA) of mediastinal lymph nodes provides a safe alternative to mediastinoscopy for staging patients with lung cancer.1–3 Performing TBNA under real time ultrasound visualisation has been shown to significantly improve the yield of TBNA compared with conventional TBNA performed without visualisation.4 In addition to the clinical benefits of this procedure, EBUS-TBNA is likely to offer ongoing cost savings by avoiding the need for mediastinoscopy and providing mediastinoscopy and EBUS-TBNA bronchoaspirations that would otherwise be required. To estimate the number of patients found to have N2/N3 disease by EBUS-TBNA, we performed a retrospective study of mediastinoscopies performed between 2003 and 2006 at Leeds Teaching Hospitals NHS Trust (LTHT), which provides mediastinoscopy and EBUS-TBNA procedures. We reviewed all mediastinoscopies performed as staging procedures for lung cancer in LTHT during 2006. We determined the annual number of mediastinoscopies performed for lung cancer staging that could be replaced by EBUS-TBNA. We then calculated the capital and annual costs of EBUS-TBNA compared with mediastinoscopy, and estimated the annual cost savings for LTHT and the local primary care trust (which commissions mediastinoscopies and provides EBUS-TBNA in LTHT as a service). We did not include the costs of PET scans, which are performed by an independent contractor at LTHT.

The annual cost savings for EBUS-TBNA were £104 465 over 5 years. The national tariff for mediastinoscopy was £2157, and the capital unit based cost for the hospital was £2000. The national tariff for PET was £975; PET is provided by an independent contractor and is thus cost neutral for LTHT. The tariff cost for standard fiberoptic bronchoscopy was £575. EBUS bronchoscopy does not currently attract an additional payment above the standard tariff. The projected unit based cost to the hospital for EBUS-TBNA was £484, rising to £675 if combined with endobronchial biopsy. These costs increase to £929 and £1120, respectively, if capital costs (distributed over 5 years) were included.

We calculated that the introduction of an EBUS-TBNA service would save the local NHS economy £32 651 per year (including capital costs). Taking into account the current tariff for EBUS-TBNA and referral routes of patients to LTHT, introduction of a service would save the local primary care trusts £89 750 per annum, but would cost LTHT an additional £26 119 per annum.

DISCUSSION

Our study identifies potential cost savings for the NHS as a result of the introduction of EBUS-TBNA. The limitations of this analysis are as follows. The sensitivities quoted in published series refer to all TBNA accessible nodes. At LTHT, large subcortical nodes are already assessed by conventional TBNA and, if malignant disease is detected, do not undergo mediastinoscopy (and thus would not feature in this analysis). The sensitivity figures quoted may therefore represent an overestimate for the purposes of this analysis. In addition, our analysis does not allow for a learning curve with the procedure. However, even with a reduced sensitivity of 80%, the annual local NHS saving would be £22 516. EBUS-TBNA offers significant time reductions between referral and treatment for some patients with lung cancer. It may also reduce hospital admissions and minimise morbidity associated with mediastinal staging. This cost minimisation analysis has identified potential savings for the NHS as a whole, but the current national tariff structure acts as a disincentive for UK hospitals to establish such a service. The introduction of an additional tariff for EBUS-TBNA would encourage greater uptake of this technique.

M E J Callister, A Gill, W Allott, P K Plant

REFERENCES


Effect of CPAP on insulin resistance in patients with obstructive sleep apnoea and type 2 diabetes

West et al are to be commended for the laborious study of the impact of continuous positive airway pressure (CPAP) on insulin resistance and glycaemic control in males with obstructive sleep apnoea syndrome (OSAS) and type 2 diabetes (Thorax 2007;62:969–74). The authors did not demonstrate an improvement in insulin sensitivity and glycaemic control in obese patients after 3 months of therapeutic CPAP compared with placebo CPAP. The presentation of the apnoea–hypopnoea index (AHI) results (shown as mean (SD, 0–100% range)) suggests some patients had a relatively low AHI. It is noteworthy that the impact of the severity of OSAS on insulin resistance and a possible therapeutic approach by CPAP remains to be clarified. The effect of chronic glucose toxicity in patients with poor glycaemic control has to be considered. The HbA1c between 8.5% and 8.4% remained unchanged and accounts for mean blood glucose levels of about 190 mg/dl.

We could not demonstrate changes in insulin sensitivity in our study in 40 non-diabetic OSAS patients (AHI 43.1 (SD11.4)), in the subgroup with a body mass index (BMI) ≥30 kg/m2,1 and also no early effect in nine well controlled diabetic patients with OSAS (BMI 37.3 (SD5.6) kg/m2).2 These findings underline the enormous impact of obesity on insulin resistance in OSAS patients, whether or not they have diabetes.
Therapeutic CPAP improved glycaemic control after 3 months in our subjects with diabetes. Changes in body composition may play a role. Unfortunately, bioelectrical impedance analysis, as used in all studies, has its limitations.

It would be very interesting to know whether there is an effect of CPAP therapy on insulin sensitivity in obese diabetic subjects as we demonstrated a rapid improvement in insulin sensitivity in our study in the non-diabetic OSAS group in those with a BMI <30 kg/m². That this early effect of CPAP may be related to acclimatisation to the conditions of the sleep laboratory and the clamp procedure is questionable as our studies were done under exactly the same conditions and there is no reason to postulate a higher stress sensitivity in leaner patients.

Although we could not measure plasma catecholamines, we were able to re-measure serum cortisol as another marker of sympathetic stimulation in 20 individuals in our study, and could not find significant differences before (mean 19.18 (SD 3.52) µg/dl) and 2 days after (19.35 (3.27) µg/dl) onset of CPAP therapy (p = 0.59).

I A Harsch, E G Hahn, S Pour Schahin
Medical Department 1, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany

Correspondence to: Dr I A Harsch, Department of Medicine I, Friedrich-Alexander University Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; igor.harsch@uk-erlangen.de

Competing interests: None.

REFERENCES


Authors’ reply

We thank Harsch et al for their comments. Their letter highlights the important contribution of obesity in studies of both insulin resistance and obstructive sleep apnoea (OSA). Although obesity underlies both pathologies, it also confounds studies investigating these conditions. The only studies therefore that can determine conclusively the effect of continuous positive airway pressure (CPAP) on improvements in insulin resistance and glycaemia in patients with OSA are double blind randomised controlled trials. We agree that a randomised controlled trial of CPAP in less obese subjects with type 2 diabetes would clarify this area further, but a study of pre-diabetic subjects with insulin resistance would be even more enlightening.

S West, J Stradling
Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford, UK

Correspondence to: Professor J Stradling, Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford OX3 7LJ, UK; john.stradling@orh.nhs.uk

Competing interests: None.

Mould eradication and asthma

The paper by Burr et al’ on the efficacy of eradicating visible indoor mould on respiratory health in patients with asthma is of great interest, but I think the authors underestimate the clinical relevance of their findings because they overestimate the lack of effect on peak expiratory flow (PEF) variability as an objective assessment of their intervention. The lack of effect on this primary endpoint in the presence of highly significant effects on medication use and symptoms—even after 12 months—simply illustrates once again that PEF is too insensitive to contribute meaningfully to the interpretation of our therapeutic interventions. The study by Burr et al’ and those of others are examples of investigations that demonstrate a lack of efficacy using PEF parameters as primary end points whereas the secondary end points—such as respiratory symptoms—demonstrate efficacy of the interventions. Increased PEF variability is a specific feature of unstable asthma but it is not necessarily a sensitive one. PEF mainly reflects central airway mechanics and is therefore not the optimal monitoring tool because asthma predominantly affects the smaller airways. Hence, PEF may severely underestimate peripheral airway patency. Clinical studies are much more convincing and powerful if sensitive and relevant end points are chosen, and I would strongly advocate using end points that are both relevant and sensitive. This will teach us more and provide more credit for all involved—doctors as well as patients.

P J F M Merkus
Correspondence to: Dr P J F M Merkus, Radboud University Children’s Hospital, P O Box 9101, Nijmegen 6500 HB, The Netherlands; p.merkus@uku.umcn.nl

Competing interests: None.

REFERENCES


CORRECTIONS

doi:10.1136/thx.2006.077081corr1

The label “OR (odds ratio)” was erroneously introduced into the headings to tables 3 and 4 in the paper by Aldington et al (Thorax 2007;62:1058–63). In table 3, the numbers in the columns refer to the estimates of the difference in the particular measurement of respiratory function between those who do and those who do not smoke tobacco, and those who do and do not smoke cannabis, respectively. The heading in table 4 refers incorrectly to OR for association between tobacco pack years or cannabis joint years and the measurement of respiratory function. The numbers in the columns refer to the change in the particular measurement of respiratory function per unit change of pack years and joint years respectively. The “OR” label should be omitted from these tables.

doi:10.1136/thx.2007.083592corr1

We would like to draw readers’ attention to a typographical error in the article by Chapman et al (Thorax 2008;63:228–33). In the discussion, the antigen CAGE is referred to as CAGE (DDXS8) and should read CAGE (DDX48); however, the corresponding references are correct. The section is given in full below:

“The DEAD-box cancer testis antigen CAGE (DDX48) has previously been shown to be expressed in a number of cancers including gastric, cervical and lung cancer tissue and cell lines, and autoantibodies have been reported to this protein in some but not all of the cancers samples studied.”
Effect of CPAP on insulin resistance in patients with obstructive sleep apnoea and type 2 diabetes
I A Harsch, E G Hahn and S Pour Schahin

Thorax 2008 63: 384-385
doi: 10.1136/thx.2007.090415

Updated information and services can be found at:
http://thorax.bmj.com/content/63/4/384.2

These include:

References
This article cites 2 articles, 0 of which you can access for free at:
http://thorax.bmj.com/content/63/4/384.2#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/