Inoperable brain metastases from non-small cell lung cancer: what part does whole brain radiotherapy play in standard treatment?

Rachael Barton

Lung cancer is the second commonest cancer in the UK with an incidence in 2006 of 37,100, and is the commonest cause of death from cancer, causing more than 33,000 deaths (22% of cancer deaths) each year.1 More than three-quarters of lung cancers fall into the histological category of non-small cell lung cancer (NSCLC). Currently, 10% of patients with NSCLC present with symptomatic brain metastases, and between a quarter and a third of those who initially survive radical treatment for stage III NSCLC will go on to develop brain metastases during their remaining life span.2 It is anticipated that over the next decade, an increasing proportion will develop brain metastases from solid malignancies.4 Of 75 patients treated with a standard WBRT regimen, only four could be shown to have an improved performance status at 1 month. At the same time point, 19% of those treated had experienced improvement in their presenting neurological symptom, 23% were stable and 55% were worse or had died. Patients fared little better when quality of life was considered: only 23 of 75 patients managed to complete quality of life forms at both baseline and 1 month; only 8 of these 23 patients had an improvement in their quality of life. The difficulties inherent in studying a group with such a poor prognosis have meant that reliable data on performance status and quality of life after WBRT are lacking.

Although survival times are short for patients with brain metastases from any primary cancer, data would suggest that patients with primary NSCLC have a worse prognosis than those with other primary malignancies and that their survival is at best measured in weeks. A study of 533 patients with brain metastases comparing two radiotherapy dose/fractionation regimens was carried out by the Royal College of Radiologists, UK.5 The subgroup of patients with NSCLC (39% of the total) had a median survival of just 69 days compared with 79 days for the group as a whole and 107 days for those with breast cancer. It is important to note that of the 533 patients randomised between the two fractionation regimens, only 352 (66%) were available for assessment at the first time point, 4 weeks after treatment. The remainder had either died or were too ill to attend. This dismal prognosis is supported by prospectively collected data on 56 patients with brain metastases from primary NSCLC who were treated with WBRT in Newcastle upon Tyne, UK, between February 2001 and December 2005 (personal communication Dr Paula Mulvenna, 2006). The median survival of this population was 2.8 months even though 70% of the patients fell within RPA classes I and II.

It is clear that even after the current accepted “standard treatment” of steroids and WBRT, the survival of patients with brain metastases from NSCLC remains poor. It is therefore vital that their performance status and quality of life, which are often compromised by the effects of intracranial and extracranial disease, are not compromised further by the effects of treatment.6 Chow et al. have documented deterioration in patient rated fatigue, drowsiness and appetite following WBRT in patients with brain metastases of various primary cancers.7 Clinical trials which have studied patients with brain metastases have largely addressed the question of radiotherapy dose and fractionation. There has been only one randomised controlled trial looking at the role of steroids with or without radiotherapy for brain metastases but this small trial pre-dates cerebral CT scanning and the results showed little benefit from addition of WBRT to supportive care and steroids.8

The inclusion of WBRT as a part of standard treatment of brain metastases in NSCLC has been the subject of much discussion in recent years. The UK Consensus statement published in 2001 highlighted the need for clinical trials to address the palliative efficacy of WBRT.9 A similar conclusion was reached by the National Cancer Institute of Canada workshop on symptom control in radiation oncology, published in 2003.10 The observed rapid deterioration in neurological function and performance status make it essential that such information is collected in the setting of a randomised clinical trial. This has led to the development of the QUARTZ trial (Quality of Life After Radiotherapy and Steroids). This trial is now open for recruitment in

Correspondence to: Dr Rachael Barton, Princess Royal Hospital, Saltshouse Rd, Hull, East Yorkshire, HU8 9HE, UK; rachael.barton@hey.nhs.uk

Thorax January 2008 Vol 63 No 1
Aspirin sensitivity and eicosanoids

Sophie Farooque, Tak H Lee

Aspirin sensitive respiratory disease (ASRD) was first described in 1922 by the French physician Widal. It is characterised by asthma, chronic rhinosinusitis and nasal polyps on a background of aspirin sensitivity. The condition is a distinct, often aggressive, clinical syndrome, and it is rare in childhood with a peak age of onset in the early 30s. Rhinorrhoea and nasal congestion are typically the first symptoms with asthma usually manifesting 1–5 years after the onset of rhinitis. Once the disease is established, ingestion of aspirin induces the release of critical mediators that provoke an acute exacerbation of rhinosinusitis and asthma. It is estimated that 5–10% of all patients with asthma are aspirin sensitive. Often poorly responsive to treatment, patients with aspirin sensitivity are over-represented in the severe asthma group and 50% are steroid dependent.

The aetiology of ASRD is complex, but most investigators are agreed that the reaction to aspirin is not mediated by allergic mechanisms. Most evidence points towards an abnormality of arachidonic acid (AA) metabolism. AA is a substrate for both the production of eicosanoids (via the cyclooxygenase (COX) pathway) and prostanoids (via the 5-lipoxygenase (5-LO) pathway) and prostanoids (via the 5-lipoxygenase (5-LO) pathway). ASRD is characterised by excessive eicosanoids.

REFERENCES

Thorax 2008;63:1–2. doi:10.1136/thx.2007.086215

ASYMPTOMATIC MENINGITIS

Thorax January 2008 Vol 63 No 1
Inoperable brain metastases from non-small cell lung cancer: what part does whole brain radiotherapy play in standard treatment?

Rachael Barton

Thorax 2008 63: 1-2
doi: 10.1136/thx.2007.086215

Updated information and services can be found at:
http://thorax.bmj.com/content/63/1/1

These include:

References
This article cites 8 articles, 1 of which you can access for free at:
http://thorax.bmj.com/content/63/1/1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Lung cancer (oncology) (670)
- Lung cancer (respiratory medicine) (670)
- Vaccination / immunisation (158)
- Lung neoplasms (608)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/