from the multiple breath nitrogen washout technique are strongly associated with AHR in asthma, and opens up a wide range of clinical and basic research avenues to elucidate the topographical and mechanistic basis of relationships between ventilation heterogeneity, exhaled nitric oxide analysis and AHR.

doi: 10.1136/thx.2006.073239

Correspondence to: Dr Jose Venegas, Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; jvenegas@partners.org

Funded by HL068011.

Competing interests: None.

REFERENCES


Staging of NSCLC

Evolution and science, progress and change
Frank C Detterbeck

Positron emission tomography in staging of intrathoracic lymph nodes in non-small cell lung cancer

S taging of non-small cell lung cancer (NSCLC) has undergone a significant evolution, from plain chest radiographs to anatomical imaging, invasive techniques and, most recently, metabolic imaging using positron emission tomography (PET) scans. Even the literature regarding PET imaging has undergone significant evolution. Initial reports were characterised by compelling yet anecdotal images. This was followed by approximately 10 years of studies showing that mediastinal staging by PET was superior to computed tomography (CT) which, of course, was not surprising because CT had already been shown to be notoriously misleading in many situations. Eventually authors began addressing the clinically more relevant question of whether PET can replace invasive mediastinal staging. The article by Tournoy and colleagues1 in this issue of Thorax illustrates how far we have come (see page 696). Not only does this study use the most sophisticated technology—an integrated PET/CT scanner—but, more importantly, the authors have elevated the science a notch by thoughtfully evaluating nuances of scan interpretation in order to maximise what can be gained from this staging modality.

The overall scientific quality of the study by Tournoy and colleagues is good. An appropriate gold standard was used by requiring a surgical staging procedure after a negative needle staging test (transoesophageal ultrasound with needle aspiration, transbronchial needle aspiration, etc, which carry a 20–30% false negative rate).2 The authors should also be commended for looking at enlarged and normal size nodes separately, since PET uptake in smaller nodules is more difficult to detect. In addition, the careful evaluation of different objective criteria to try to improve the reliability of the PET interpretation is a valuable addition. On the other hand, reporting results on a per node basis statistically biases the results in favour of PET. Furthermore, this makes the data less applicable clinically because we must decide how to manage patients, not individual nodes. Additionally, lumping together mediastinal and hilar nodes biases the study in favour of PET because it avoids a distinction that can be difficult to make on PET. This also makes the data less clinically applicable because involved N1 nodes are generally treated differently from involved N2 nodes. An additional criticism is that the final assessment of the nodes is vague (which would also tend to bias the results in favour of PET).

It is unclear whether patients with a negative invasive staging went on to
resection, and whether further nodal sampling at the time of resection was done. Finally, it appears that node sampling was limited (average of 2.01 nodes per patient, including both mediastinal and hilar node stations).

In the end, the study by Tournoy et al shows that evolution does not necessarily mean we are making progress. The study shows that PET is not adequate to avoid invasive staging in most instances despite the sophisticated technology of CT/PET, the evaluation of objective criteria and the inherent bias of a per node analysis. The key test parameters for a clinician in deciding whether a test is reliable enough to guide the management of an individual patient is the false positive or false negative rate. This study shows that a positive PET scan must be confirmed (false positive rate of 21% with enlarged nodes and 50% with normal size nodes).3,5 Furthermore, the study shows that a negative PET result carries a significant false negative rate (9% with normal size nodes and 10% with enlarged nodes).1 These results are generally consistent with that of other authors, which have shown a false negative rate of PET in the mediastinum of 20–30% in patients with discrete enlarged mediastinal nodes1,4 and of 25% in patients with a normal mediastinum and enlarged N1 nodes.6,6 However, the false negative rate of PET in the mediastinum is <5% for patients with a peripheral clinical stage I tumour.5,10

It is interesting to revisit the evolution of CT imaging. The early CT studies, involving limited numbers of patients and first generation scanners, reported sensitivity and specificity rates of >90%. Later studies, involving many hundreds of patients and fourth generation scanners, found sensitivity and specificity rates of approximately 60–70%.11,12 It appears that broader application of CT (across many centres and more generally to patients) yielded worse results, despite major technological improvements (rapid, helical, higher resolution scanners). Similarly, the early studies of PET in NSCLC demonstrated sensitivity and specificity for mediastinal staging of over 90%,13 while the more recent results show these rates to be around 70–80% despite advancing technology.14,15 Is the study by Tournoy7 showing that we have reached the limits of what PET imaging can give us with regard to mediastinal staging?

Invasive staging tests have also undergone an evolution. Needle aspiration has gone from a “blind” transcervical aspiration to real-time image-guided aspirations via either transoesophageal ultrasound or endobronchial ultrasound. The data from these newer interventions appear to be much better than the older transluminal needle technique.15,16 Mediastinoscopy has evolved from a simple lighted tube to video-mediastinoscopy and video-mediastinoscopic lymphadenectomy, both of which have been reported to have better reliability than simple mediastinoscopy.17,18 We will have to see whether the excellent results reported in the initial studies hold up as the technology disseminates.

So where does this leave us? Again, it is worth revisiting the evolution of CT imaging in lung cancer. There is no doubt that CT has become an integral and, for all practical purposes, an essential part of the assessment of a patient with lung cancer. This is because CT is invaluable in guiding the evaluation and choice of treatment in patients with NSCLC and not because it obviates the need for invasive mediastinal staging tests, as was originally anticipated. Chest CT scanning helps guide the need for extra-thoracic imaging in that approximately 30% of patients with enlarged mediastinal nodes will have detectable distant metastases despite having no signs of symptoms of metastases,5,16 whereas <5% will have distant metastases if they are asymptomatic and have a stage I tumour by CT scanning.2,24 The study shows that PET is not adequate to avoid invasive staging in most instances despite the sophisticated technology of CT/PET, and first generation scanners, reported in the initial studies hold up as evidence based clinical practice guideline, 2nd edn 2007.6,6 Furthermore, PET is not adequate to avoid invasive staging in most instances despite the sophisticated technology of CT/PET, and first generation scanners, reported in the initial studies hold up as evidence based clinical practice guideline, 2nd edn 2007.6,6

REFERENCES


www.thoraxjnl.com
Diagnosing primary ciliary dyskinesia

Christopher O’Callaghan, Mark Chilvers, Claire Hogg, Andrew Bush, Jane Lucas

A nationally funded diagnostic service should lead to improved outcome

The National Specialist Commissioning Advisory Group (NSCAG) has funded three centres to establish and provide a national diagnostic service for England for children and adults suspected of suffering from primary ciliary dyskinesia (PCD). This is welcomed, as state of the art diagnostic testing will be available nationally which will increase the numbers of patients diagnosed with a condition in which early diagnosis has a very significant effect on both short-term and long-term morbidity. Inheritance is autosomal recessive with an incidence of around 1:15 000 in the Caucasian population and, as expected, we have found a much higher incidence in ethnic groups where consanguineous marriages are common. Accurate diagnosis will allow appropriate genetic counselling of families.

PCD is caused by one of a number of different ciliary defects that result in ineffective mucociliary clearance. Although most patients with PCD have symptoms from birth or early infancy, the diagnosis is frequently delayed and it is likely that a significant number of patients are never diagnosed. Failure to diagnose PCD leads to progressive and permanent lung destruction owing to obstruction of the airways with secretions and subsequent infection, leading to bronchiectasis. Early diagnosis of PCD is important as deterioration in lung function can largely be prevented by specialist respiratory care. Failure to recognise the condition frequently leads to inappropriate ear, nose and throat (ENT) surgery. Grommet insertion may lead to persistent aural discharge with little improvement in hearing loss. A number of patients with unrecognised PCD present in infertility clinics. Infertility in males, although not inevitable, is due to sperm tails being affected as part of their PCD. There is an increased incidence of ectopic pregnancy due to defective movement of the cilia in the fallopian tube.

As PCD testing is not a front line test for those with respiratory problems, who should be referred? Patients with situs inversus, which occurs in 40–50% of individuals with PCD, is an obvious indication. Of patients referred to our laboratory with situs inversus, 75% have been confirmed to have PCD. Of patients without situs inversus, those with bronchiectasis and life-long nasal symptoms in whom no other cause has been identified should be considered for referral. A significant number of patients with PCD will have a history of unexplained neonatal respiratory distress and persistent rhinitis from birth. The real aim, however, is to diagnose children before bronchiectasis develops and before they are subjected to repeated ENT surgery. The investigation of children with host defence problems—including PCD—who are at risk of developing bronchiectasis is frequently delayed. Reasons for the delay include the child’s tendency to swallow rather than expectorate sputum, a distinct lack of auscultatory findings and temperature even during acute exacerbations, and the fact that the chest radiograph often appears normal.

So, how do we recognise a young child at risk of developing bronchiectasis? The important sign is that of a persistent “wet” sounding cough. If such a cough persists for more than 8 weeks or improvement is seen with antibiotic treatment but symptoms return when stopped, paediatric review should be arranged. In patients with PCD the cough never goes completely even with treatment and “has always been there”. Testing for PCD should be considered if standard first line investigations to exclude cystic fibrosis (CF) and screening for immunological defects are negative and the child has a life-long history of a “wet” sounding cough and persistent nasal symptoms. A number of patients will have a history of unexplained neonatal respiratory distress. Hearing problems are only seen in half of cases. If the child is from a consanguineous marriage, suspicion should be higher. Nonetheless, symptoms may be mild; in one series, diagnosis was made in 10% as a result of family screening after the diagnosis in an index case.

Diagnosis to date has largely been provided on an ad hoc basis, with lack of standardisation of, and inaccessibility to, diagnostic testing for the majority of patients in the UK. Screening tests for PCD exist, but there are problems associated with them. The saccharin test used to assess mucociliary function is difficult to perform and is unreliable in children. Measurement of nasal nitric oxide, which is very low in patients with PCD, is now accepted as the most sensitive and specific screening test for PCD.

Unfortunately this is not widely available and cannot be used in young children. The development of new methodologies over the last few years has allowed improved diagnostic testing for PCD. The traditional measurement of ciliary beat frequency alone has been shown to miss a proportion of patients with PCD whose ciliary beat frequency is normal but beat pattern abnormal. Diagnostic assessment following biopsy will now include measurement of ciliary beat frequency, high speed analysis of ciliary beat pattern, detailed electron microscopy of ciliary ultrastructure and, in cases where there are diagnostic uncertainties, cell culture from biopsies. Although the genetics of