Lymphangioleiomyomatosis—presence of receptor tyrosine kinases and the angiogenesis factor VEGF-A as potential therapeutic targets

Lymphangioleiomyomatosis (LAM) is a rare systemic disorder in women occurring either sporadically (sporadic LAM) or in association with tuberous sclerosis (TS-LAM). It is caused by proliferating smooth muscle-like LAM cells, which lead to a progressive cystic destruction of the affected organs (renal angiomyolipomas and/or axial lymph node lesions). LAM cells express receptors for oestrogen and progesterone and stain positive for HMB-45, an antibody against the melanoma-related antigen. LAM fulfills the criteria of a neoplastic disease with enhanced proliferation, metastasising processes, increased migratory activity and invasiveness of LAM cells. Currently, an effective treatment interfering with these processes does not exist. Growth factors such as platelet-derived growth factor (PDGF) and epithelial growth factor (EGF) have been identified to enhance LAM and renal angiomyolipoma cell proliferation in vitro. Whether LAM cells express growth factor-associated receptor tyrosine kinases and the angiogenesis factor vascular endothelial growth factor A (VEGF-A), which represent promising targets of small-molecule and antibody therapy in neoplastic diseases, is currently unknown.

We studied immunohistochemically the expression of the following proteins by LAM cells in 10 formalin-fixed and paraffin-embedded LAM specimens: epithelial growth factor receptor (EGFR; PharmDx Kit, Dako, Hamburg, Germany), platelet-derived growth factor receptor α (PDGFR-α; rabbit polyclonal, Dianova, Hamburg, Germany), human epithelial growth factor receptor-2 (HER2; Herecept, Dako), VEGF-A (clone VGI, identifying the VEGF-A isoforms VEGF121, VEGF165 and VEGF189, DCS, Hamburg, Germany) and c-KIT (CD117; rabbit polyclonal, Dako). Staining procedures were carried out according to the manufacturer's instructions, and appropriate positive and negative controls were used. A semiquantitative scoring system of the immunohistochemical reactions for all receptor tyrosine kinases, the hormone receptors and VEGF-A was applied as follows: negative, no reaction or percentage of positive cells <5%; 1, 5–25% positive cells; 2, 26–50% positive cells; 3, 51–75% positive cells; 4, >75% positive cells; +, weak staining intensity; ++, moderate staining intensity; ++++, strong staining intensity. Histological severity of lung destruction was assessed using the LAM histological score. The assessment of the LAM histological score and the immunohistochemical stainings were performed independently by two histopathologists (KE and MA). Only morphologically clear-cut, HMB-45-positive LAM lesions (nodules, cysts and diffuse LAM cell proliferations) were taken for analysis. All final decisions were made by consensus. Additionally, EGFR gene copy number per LAM cell nucleus was investigated by one histopathologist (SL) using fluorescence in situ hybridisation (FISH; LSI EGFR SpectrumOrange/CEP 7 SpectrumGreen probe, Vysis, Abbott Laboratories, Wiesbaden, Germany). The study was approved by the local ethics committee and written informed consent was obtained from all participants or their close relatives.

In all specimens, LAM lesions were consistently positive for PDGFR-α and VEGF-A. EGFR-positive LAM cells were observed in seven specimens. No amplification or higher polysomy of the EGFR gene was detected. In addition to c-KIT-positive mast cells, which were sporadically present in LAM lesions and the surrounding lung tissue, LAM cells themselves were found to be positive for c-KIT in six of the specimens. HER2 was negative in all specimens (fig 1). For details, see supplementary table available online at http://www.thorax.bmjournals.com/supplemental.

We demonstrated that EGFR, PDGFR-α, c-KIT and VEGF-A as targets of currently available compounds are expressed by LAM cells. These findings imply further research in the field of small-molecule and antibody therapy in LAM.

Acknowledgements

We thank Professor H Morr, Dr J Linke, Dr J Galle, Dr C Sznaczyn and Dr M Koschzuck for providing us with the tissue samples. We also thank Ralf Liebertz and his team for the excellent technical assistance.

References

A supplementary table is available online at http://www.thorax.bmj.com/supplemental

Figure 1 Expression of epithelial growth factor receptor (EGFR), platelet-derived growth factor receptor α (PDGFR-α), vascular endothelial growth factor A (VEGF-A) and c-KIT (CD117) in lung lymphangioleiomyomatosis (LAM) lesions. The panel shows two pulmonary LAM specimens (case 5, A-D; case 7, E-H). Case 5 (A-D) represents predominant cystic and diffuse proliferating LAM lesions, whereas case 7 (E-H) represents predominant nodular growth pattern. The cases show a variable expression of EGFR, PDGFR-α, VEGF-A and c-KIT (CD117).
Lymphangioleiomyomatosis—presence of receptor tyrosine kinases and the angiogenesis factor VEGF-A as potential therapeutic targets

Henrik Watz, Knut Engels, Siegfried Loeschke, Michael Amthor, Detlef Kirsten and Helgo Magnussen

Thorax 2007 62: 559
doi: 10.1136/thx.2006.071811

Updated information and services can be found at:
http://thorax.bmj.com/content/62/6/559

These include:

Supplementary Material
Supplementary material can be found at:
http://thorax.bmj.com/content/suppl/2007/05/24/62.6.559.DC1

References
This article cites 6 articles, 2 of which you can access for free at:
http://thorax.bmj.com/content/62/6/559#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/