Macrophage enrichment from induced sputum

Since induced sputum has become a widely used non-invasive method of recovering cells from the surfaces of the bronchial airways, isolating specific cell populations will be necessary in order to learn more about their specific role in innate immunity and inflammation in the airways. Several studies have demonstrated the ability to conduct ex vivo analyses on sputum cells such as phagocytosis and surface marker measurements, but these have not been performed on isolated cell types. This study demonstrates the capability to isolate sputum macrophages from human volunteers in order to advance our understanding of macrophage biology in the airways. To this end, techniques that can enrich and isolate cells without significant activation would prove extremely useful. We compared two common methods for isolating and enriching macrophages in sputum: (1) magnetic bead separation; and (2) Percoll density gradient centrifugation. Cell purity and markers of cell activation (mRNA tumour necrosis factor α (TNFα)) and interleukin-1β (IL1β)) were measured at various time points in the isolation process.

Nine healthy subjects underwent induced sputum. Sputum collection and sputum processing has been described in detail previously. For measuring natural cell activation over time, we incubated the processed sputum cells for 3 h at 37°C and analysed mRNA TNFα and IL1-β at 0 h (baseline) and 3 h. In the positive control experiment we incubated the processed sputum cells with LPS (Escherichia coli, Sigma). For Percoll (Amersham Biosciences) separation, 600 µl of sputum cell suspension (1x10⁶ cells/ml) was layered over Percoll solution (42%) and centrifuged at 560 g for 10 min. Sputum macrophages were removed and incubated at 37°C for 1, 2 and 3 h, respectively, and a pre-incubation sample was also collected. The macrophages were further pelleted and stored at −70°C. For Dynabead separation, CELLection Pan Mouse IgG Kit (Dynal, Norway) was used for immunomagnetic separation of airway macrophages coated with mouse monoclonal IgG2b HLA-DR antibody (Diatec, Norway). Bead coating and cell isolation was performed according to the protocol from the manufacturer. The isolated cells were incubated at 37°C for 1, 2 and 3 h, respectively, and a pre-incubation sample was also collected. The samples were further pelleted and stored at −70°C. Total RNA was extracted (Qiagen) from all the cell samples and reverse transcription was performed (SuperScript III, Invitrogen). We used pre-developed PCR primers and probes for TNFα and the housekeeping gene PGK (Applied Biosystems). Specific primers and probes were designed for

![Figure 1](http://thorax.bmj.com/)

Figure 1 Gene expression of tumour necrosis factor α (TNFα) and interleukin-1β (IL1β) in airway macrophages in induced sputum. The 0 hour (h) Percoll suspensions are used as baseline for 1 h, 2 h and 3 h Percoll suspension (TNFα or IL1β Percoll, n = 7). The Dynabeads 0 hour suspension are used as the baseline sample for 1 h, 2 h and 3 h Dynabeads suspensions (TNFα or IL1β beads, n = 6). In addition, gene expression in the whole cell population is measured at 0 h and 3 h with (n = 1) or without (n = 5) addition of lipopolysaccharide (LPS). The data are presented as mean (SE).

Liv I B Sikkeland
Centre for Occupational and Environmental Medicine, Rikshospitalet-Radiumhospitalet Medical Center, Oslo and Department of Respiratory Medicine, Faculty Division Rikshospitalet, University of Oslo, Norway

Johny Kongerud
Department of Respiratory Medicine, Rikshospitalet-Radiumhospitalet Medical Center, Oslo and Department of Respiratory Medicine, Faculty Division Rikshospitalet, University of Oslo, Norway

Astrid M Stangeland
Department of Respiratory Medicine, Faculty Division Rikshospitalet, University of Oslo, Norway

Terje Haug
Centre for Occupational and Environmental Medicine, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway

Neil E Alexis
Centre for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, North Carolina, USA

Correspondence to: Dr Liv I B Sikkeland, Centre for Occupational and Environmental Medicine, Rikshospitalet-Radiumhospitalet Medical Center, N-0027 Oslo, Norway; liv.sikkeland@rikshospitalet.no
doi: 10.1136/thx.2006.073544

Competing interests: None.

References

www.thoraxjnl.com
Lymphangioleiomyomatosis—presence of receptor tyrosine kinases and the angiogenesis factor VEGF-A as potential therapeutic targets

Lymphangioleiomyomatosis (LAM) is a rare systemic disorder in women occurring either sporadically (sporadic LAM) or in association with tuberous sclerosis (TS-LAM). It is caused by proliferating smooth muscle-like LAM cells, which lead to a progressive cystic destruction of the lung, tumors (renal angiomyolipomas and/or axial lymph node lesions). LAM cells express receptors for oestrogen and progesterone and stain positive for HMB-45, an antibody against the melanoma-related antigen. LAM fulfills the criteria of a neoplastic disease with enhanced proliferation, metastasising processes, increased migratory activity and invasiveness of LAM cells. Currently, an effective treatment interfering with these processes does not exist.

Growth factors such as platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) have been identified to enhance LAM and renal angiomyolipoma cell proliferation in vitro. Whether LAM cells express growth factor-associated receptor tyrosine kinases and the angiogenesis factor vascular endothelial growth factor-A (VEGF-A), which represent promising targets of small-molecule and antibody therapy in neoplastic diseases, is currently unknown.

We studied immunohistochemically the expression of the following proteins by LAM cells in 10 formalin-fixed and paraffin-embedded LAM specimens: epithelial growth factor receptor (EGFR), platelet-derived growth factor receptor β (PDGFR-β), rabbit polyclonal, Dako, Hamburg, Germany), human epidermal growth factor receptor-2 (HER2; Herecept, Dako, Germany), VEGF-A (clone VGI identifying the VEGF-A isoforms VEGF121, VEGF165 and VEGF189, DCS, Hamburg, Germany) and c-KIT (CD117; rabbit polyclonal, Dako). Staining procedures were carried out according to the manufacturer's instructions, and appropriate positive and negative controls were used. A semiquantitative scoring system of the immunohistochemical reactions for all receptor tyrosine kinases, the hormone receptors and VEGF-A was applied as follows: negative, no reaction or percentage of positive cells <5%; 1, 5–25% positive cells; 2, 26–50% positive cells; 3, 51–75% positive cells; 4, >75% positive cells; +, weak staining intensity; ++, moderate staining intensity; +++, strong staining intensity. Histological severity of lung destruction was assessed using the LAM histological score. The assessment of the LAM histological score and the immunohistochemical stainings was performed independently by two histopathologists (KE and MA). Only morphologically clear-cut, HMB-45 positive LAM lesions (nodules, cysts and diffuse LAM cell proliferations) were taken for analysis. All final decisions were made by consensus. Additionally, EGFR gene copy number per LAM cell nucleus was investigated by one histopathologist (SL) using fluorescence in situ hybridisation (FISH; LSI EGFR SpectrumOrange/CEP 7 SpectrumGreen probe, Vysis, Abbott Laboratories, Wiesbaden, Germany). The study was approved by the local ethics committee and written informed consent was obtained from all participants or their close relatives.

In all specimens, LAM lesions were consistently positive for PDGFR-β and VEGF-A. EGFR-positive LAM cells were observed in seven specimens. No amplification or higher polyploidy of the EGFR gene was detected. In addition to c-KIT-positive mast cells, which were sporadically present in LAM lesions and the surrounding lung tissue, LAM cells themselves were found to be positive for c-KIT in six of the specimens. HER2 was negative in all specimens (fig 1). For details, see supplementary table available online at http://www.thorax.bmjournals.com/supplemental.

We demonstrated that the EGFR, PDGFR, c-KIT and VEGF-A as targets of currently available compounds are expressed by LAM cells. These findings imply further research in the field of small-molecule and antibody therapy in LAM.

Acknowledgements

We thank Professor H Morr, Dr J Linke, Dr J Galle, Dr C. Smaczny and Dr M Choschuck for providing us with the tissue samples. We also thank Ralf Lieberz and his team for the excellent technical assistance.

Figure 1 Expression of epithelial growth factor receptor (EGFR), platelet-derived growth factor receptor β (PDGFR-β), vascular endothelial growth factor-A (VEGF-A) and c-KIT (CD117) in lung lymphangioleiomyomatosis (LAM) lesions. The panel shows two pulmonary LAM specimens (case 5, A–D; case 7, E–H). Case 5 (A–D) represents predominant cystic and diffuse proliferating LAM lesions, whereas case 7 (E–H) represents predominant nodular growth pattern. The cases show a variable expression of EGFR, PDGFR-β, VEGF-A and c-KIT (CD117).

Henrik Watz*

Pulmonary Research Institute, Hospital Grosshansdorf, Center for Pneumology and Thoracic Surgery, Grosshansdorf, Germany

Knut Engels*

Department of Pathology, University Clinic Frankfurt, Frankfurt, Germany

Siegfried Loesche

Department of Pathology, Research Center Borstel, Borstel, Germany

Michael Amthor

Department of Pathology, Hospital Rotenburg, Rotenburg, Germany

Detlef Kirsten, Helgo Magnussen

Hospital Grosshansdorf, Center for Pneumology and Thoracic Surgery, Grosshansdorf, Germany

Figure 1. Expression of epithelial growth factor receptor (EGFR), platelet-derived growth factor receptor β (PDGFR-β), vascular endothelial growth factor-A (VEGF-A) and c-KIT (CD117) in lung lymphangioleiomyomatosis (LAM) lesions. The panel shows two pulmonary LAM specimens (case 5, A–D; case 7, E–H). Case 5 (A–D) represents predominant cystic and diffuse proliferating LAM lesions, whereas case 7 (E–H) represents predominant nodular growth pattern. The cases show a variable expression of EGFR, PDGFR-β, VEGF-A and c-KIT (CD117).

*These authors contributed equally to this work.

Competing interests: None.

A supplementary table is available online at http://www.thorax.bmj.com/supplemental.

References

Macrophage enrichment from induced sputum

Liv I B Sikkeland, Johny Kongerud, Astrid M Stangeland, Terje Haug and Neil E Alexis

Thorax 2007 62: 558-559
doi: 10.1136/thx.2006.073544

Updated information and services can be found at:
http://thorax.bmj.com/content/62/6/558

These include:

References
This article cites 4 articles, 0 of which you can access for free at:
http://thorax.bmj.com/content/62/6/558#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/