Macrophage enrichment from induced sputum

Since induced sputum has become a widely used non-invasive method of recovering cells from the surfaces of the bronchial airways, isolating specific cell populations will be necessary in order to learn more about their specific role in innate immunity and inflammation in the airways. Several studies have demonstrated the ability to conduct ex vivo analyses on sputum cells such as phagocytosis and surface marker measurements, but these have not been performed on isolated cell types.1–3 This study demonstrates the capability to isolate sputum macrophages from human volunteers in order to advance our understanding of macrophage biology in the airways. To this end, techniques that can enrich and isolate cells without significant activation would prove extremely useful. We compared two common methods for isolating and enriching macrophages in sputum: (1) magnetic bead separation; and (2) Percoll density gradient centrifugation. Cell purity and markers of cell activation (mRNA tumour necrosis factor α (TNFα)) and interleukin-1β (IL1β) were measured at various time points in the isolation process.

Nine healthy subjects underwent induced sputum. Sputum collection and sputum processing has been described in detail previously.4 For measuring natural cell activation over time, we incubated the processed sputum cells for 3 h at 37°C and analysed mRNA TNFα and IL1β at 0 h (baseline) and 3 h. In the positive control experiment we incubated the processed sputum cells with LPS (E. coli, Sigma). For Percoll (Amersham Biosciences) separation, 600 μl of sputum cell suspension (1×10^6 cells/ml) was layered over Percoll solution (42%) and centrifuged at 560 g for 10 min. Sputum macrophages were removed and incubated at 37°C for 1, 2 and 3 h, respectively, and a pre-incubation sample was also collected. The macrophages were further pelleted and stored at −70°C. For Dynabead separation, CELLection Pan Mouse IgG Kit (Dynal, Norway) was used for immunomagnetic separation of airway macrophages coated with mouse monoclonal IgG2b HLA-DR antibody (Diaotec, Norway). Bead coating and cell isolation was performed according to the protocol from the manufacturer. The isolated cells were incubated at 37°C for 1, 2 and 3 h, respectively, and a pre-incubation sample was also collected. The samples were further pelleted and stored at −70°C. Total RNA was extracted (Qiagen) from all the cell samples and reverse transcription was performed (Superscript III, Invitrogen). We used pre-developed PCR primers and probes for TNFα and the housekeeping gene PGK (Applied Biosystems). Specific primers and probes were designed for

Figure 1 Gene expression of tumour necrosis factor α (TNFα) and interleukin 1β (IL1β) in airway macrophages in induced sputum. The 0 hour (h) Percoll suspensions are used as baseline for 1 h, 2 h and 3 h Percoll suspension (TNFα or IL1β Percoll, n=7). The Dynabeads 0 hour suspension are used as the baseline sample for 1 h, 2 h and 3 h Dynabeads suspensions (TNFα or IL1β beads, n=6). In addition, gene expression in the whole cell population is measured at 0 h and 3 h with (n=1) or without (n=5) addition of lipopolysaccharide (LPS). The data are presented as mean (SE).

Liv I B Sikkeland
Centre for Occupational and Environmental Medicine, Rikshospitalet-Radiumhospitalet Medical Center, Oslo and Department of Respiratory Medicine, Faculty Division Rikshospitalet, University of Oslo, Norway

Johny Kongerud
Department of Respiratory Medicine, Rikshospitalet-Radiumhospitalet Medical Center, Oslo and Department of Respiratory Medicine, Faculty Division Rikshospitalet, University of Oslo, Norway

Astrid M Stangeland
Department of Respiratory Medicine, Faculty Division Rikshospitalet, University of Oslo, Norway

Terje Haug
Centre for Occupational and Environmental Medicine, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway

Neil E Alexis
Centre for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, North Carolina, USA

Correspondence to: Dr Liv I B Sikkeland, Centre for Occupational and Environmental Medicine, Rikshospitalet-Radiumhospitalet Medical Center, N-0027 Oslo, Norway; liv.sikkeland@rikshospitalet.no
doi: 10.1136/thx.2006.073544

Competing interests: None.

References

www.thoraxjnl.com

D S Robinson
Department of Allergy and Clinical Immunology, Leukocyte Biology Section, MRC and Asthma UK Centre in Mechanisms of Asthma, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK

Correspondence to: Professor A Barry Kay, Sir Alexander Fleming Building, Leukocyte Biology Section, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; a.b.kay@imperial.ac.uk
doi: 10.1136/thx.2006.073775

Funding: This study was sponsored by the Imperial College Trust Fund.

Competing interests: None declared.
Lymphangioleiomyomatosis—presence of receptor tyrosine kinases and the angiogenesis factor VEGF-A as potential therapeutic targets

Lymphangioleiomyomatosis (LAM) is a rare systemic disorder in women occurring either sporadically (sporadic LAM) or in association with tuberous sclerosis (TS-LAM). It is caused by proliferating smooth muscle-like LAM cells, which lead to a progressive cystic destruction of the lungs and abdominal tumours (renal angiomylipomas and/or axial lymph node lesions). LAM cells express receptors for oestrogen and progesterone and stain positive for HMB-45, an antibody against the melanoma-related antigen. LAM fulfils the criteria of a neoplastic disease with enhanced proliferation, metastasising processes, increased migratory activity and invasiveness of LAM cells. Currently, an effective treatment interfering with these processes does not exist. Growth factors such as platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) have been identified to enhance LAM and renal angiomylipoma cell proliferation in vitro and in vivo. Whether LAM cells express growth factor-associated receptor tyrosine kinases and the angiogenesis factor vascular endothelial growth factor-A (VEGF-A), which represent promising targets of small-molecule and antibody therapy in neoplastic diseases, is currently unknown.

We studied immunohistochemically the expression of the following proteins by LAM cells in 10 formalin-fixed and paraffin-embedded LAM specimens: epidermal growth factor receptor (EGFR; PharmDx Kit; Dako, Hamburg, Germany), platelet-derived growth factor receptor α (PDGFR-α; rabbit polyclonal, Dianova, Hamburg, Germany), human epidermal growth factor receptor-2 (HER2; HercepTest, Dako, Hamburg, Germany), epidermal growth factor receptor-2 (EGFR; clone 22C10, Dako, Hamburg, Germany), and c-KIT (CD117; rabbit polyclonal, Dako, Hamburg, Germany). The study was approved by the local ethics committee and written informed consent was obtained from all participants or their close relatives.

In all specimens, LAM lesions were consistently positive for PDGFR-α and VEGF-A. EGFR-positive LAM cells were observed in seven specimens. No amplification or higher polysomy of the EGFR gene was detected. In addition to c-KIT-positive mast cells, which were sporadically present in LAM lesions and the surrounding lung tissue, LAM cells themselves were found to be positive for c-KIT in six of the specimens. HER2 was negative in all specimens (fig 1). For details, see supplementary table available online at http://www.thorax.bmjournals.com/supplemental.

We demonstrated that PDGFR-α, EGFR, c-KIT and VEGF-A as targets of currently available compounds are expressed by LAM cells. These findings imply further research in the field of small-molecule and antibody therapy in LAM.

Acknowledgements

We thank Professor H Mort, Dr J Linke, Dr J Galle, Dr C Smaczny and Dr M Choschzick for providing us with the tissue samples. We also thank Ralf Liebertz and his team for the excellent technical assistance.

Conflict of interest: None.

A supplementary table is available online at http://www.thorax.bmj.com/supplemental

References

4. Goncharova EA, Goncharov DA, Lim PN, et al. Modulation of cell migration and invasiveness by tumor suppressor TSC2 in lymphangioleio-
Macrophage enrichment from induced sputum

Liv I B Sikkeland, Johny Kongerud, Astrid M Stangeland, Terje Haug and Neil E Alexis

Thorax 2007 62: 558-559
doi: 10.1136/thx.2006.073544

Updated information and services can be found at:
http://thorax.bmj.com/content/62/6/558

These include:

References
This article cites 4 articles, 0 of which you can access for free at:
http://thorax.bmj.com/content/62/6/558#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/