CASE REPORT

Occupational eosinophilic bronchitis in a foundry worker exposed to isocyanate and a baker exposed to flour

Fabio Di Stefano, Luca Di Giampaolo, Nicola Verna, Mario Di Gioacchino

Eosinophilic bronchitis without asthma may occur as a consequence of occupational exposure. The cases of a foundry worker and a baker who developed symptoms, respectively, due to exposure to isocyanate and flour, are reported. Cough was not associated with variable airflow obstruction or with airway hyper-responsiveness and was responsive to inhaled corticosteroids. The eosinophilia detectable in their sputum was causally related to the occupational exposure in the workplace. The examination of induced sputum should be used in addition to the objective monitoring of lung function for workers who have asthma-like symptoms in an occupational setting.

CASE REPORT 1
A 44-year-old man had worked in a foundry for 8 years. He used to smoke 10 cigarettes daily and had no history of atopy and asthma. He described his job as making cores and, from the safety data sheet he gave us, it was apparent that he was exposed to methylene diphenyl isocyanate (MDI). He had never had respiratory symptoms before the previous 6 months, when he started having a non-productive chronic cough without wheezing or dyspnoea. The cough worsened at work and waned during holidays. He was prescribed antitussive medication by his general practitioner 2 months before. Peripheral blood count was normal. Table 2 shows the skin and blood tests for allergy, lung function and cellularity of sputum induced after the work shift. Sputum induction was performed as described by Pin et al.

The methacholine challenge was normal at a maximal dose–response curve (provocative dose inducing a 20% fall in FEV1 >3200 μg). Table 1 shows the percentages of non-squamous epithelial cells in induced sputum.

CASE REPORT 2
A 41-year-old male baker, non-smoker, had been exposed to flour for 10 years. In the previous 2 years he had developed a non-productive chronic cough without wheezing or dyspnoea. The cough worsened at work and waned during holidays. He was prescribed inhaled fluticasone (500 μg) and atypical symptoms of gastro-oesophageal reflux. He continued to work in the family bakery and treatment with inhaled fluticasone (500 μg daily) was started. He had a marked response to treatment and was asymptomatic after 1 month. While still receiving treatment and being followed up in our outpatient clinic, he took temporary leave from the bakery work so we discontinued his treatment and advised him to contact us if symptoms occurred and to come to our outpatient clinic before he started baking again. During this period he remained asymptomatic. Sputum induction was performed while asymptomatic, still exposed at work but taking inhaled steroids, and while asymptomatic, not exposed at work and after flour-specific bronchial challenge.

The flour bronchial challenge was performed, according to the European Respiratory Society guidelines, in a worksite simulation with the patient’s own flour samples. The patient shook approximately 100 g of flour in an open bag for up to 30 min, with flour concentrations in air (measured by nephelometry, Grimm Technik GmbH & Co. KG, Ainring, Germany) ranging between 90 and 130 mg/m3. During the challenge he had a non-productive cough which persisted for several hours, but no changes in FEV1 were measured during the 24 h observation period. After this period, sputum

Abbreviations: FEV1, forced expiratory volume in 1 s; MDI, methylene diphenyl isocyanate
induction was performed before methacholine challenge. The methacholine challenge was normal at a maximal dose–response curve (provocative dose inducing a 20% fall in FEV$_1$ >3200 μg). Table 2 shows the percentages of non-squamous epithelial cells in induced sputum.

Table 1 Skin and blood tests for allergy, lung function and induced sputum of case 1

<table>
<thead>
<tr>
<th>Skin prick test</th>
<th>Common Aeroallergens (Alk)*</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total serum IgE</td>
<td>HDI</td>
<td>Negative (<0.35 kU/l)</td>
</tr>
<tr>
<td>ImmunoCAP Pharmacia</td>
<td>MDI</td>
<td>Negative (<0.35 kU/l)</td>
</tr>
<tr>
<td>FEV$_1$</td>
<td>3.14 litres (92% predicted value)</td>
<td></td>
</tr>
<tr>
<td>FVC</td>
<td>4.1 litres (93% predicted value)</td>
<td></td>
</tr>
<tr>
<td>FEV$_1$/FVC</td>
<td>75%</td>
<td></td>
</tr>
</tbody>
</table>

Peak expiratory flow rate† Daily variability <20%

PD$_{20}$§ >3200 μg

Induced sputum After the work shift While asymptomatic (not exposed at work) After isocyanate bronchial challenge

Total cell count (x106/ml) 2.7 1.3 3.8

Non-squamous epithelial cells (%) Neutrophils 38 35 25 Eosinophils 35 0 60 Macrophages 27 65 15

FEV$_1$, forced expiratory volume in 1 s; FVC, forced vital capacity; HDI, hexamethylene diisocyanate; MDI, methylene diphenyl isocyanate; TDI, toluene diisocyanate.

*House dust mites, pollens, cat and dog dander, moulds such as Alternaria alternata, Aspergillus fumigatus and Cladosporium herbarum.

†Peak expiratory flows measured six times daily for 4 weeks without significant changes at work or away from work.

§Methacholine challenge performed soon after the work shift (approximately 3 h after) at a maximal dose–response curve.

Alk-Abello , Horsholm, Denmark; ImmunoCAP Pharmacia, Uppsala, Sweden.

Table 2 Skin and blood tests for allergy, lung function and induced sputum of case 2

<table>
<thead>
<tr>
<th>Skin prick test</th>
<th>Common Aeroallergens (Alk)*</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baking allergens (Alk)</td>
<td>Wheat flour</td>
<td>Positive†</td>
</tr>
<tr>
<td></td>
<td>Rye flour</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Oat flour</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Corn flour</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Soy flour</td>
<td>Negative</td>
</tr>
<tr>
<td>Total IgE</td>
<td>Wheat</td>
<td>Increased (190 kU/l)</td>
</tr>
<tr>
<td>Specific serum IgE (ImmunoCAP Pharmacia)</td>
<td>α-Amylase</td>
<td>Positive (16 kU/l)</td>
</tr>
<tr>
<td>FEV$_1$</td>
<td>3.49 litres (106% predicted value)</td>
<td></td>
</tr>
<tr>
<td>FVC</td>
<td>4.62 litres (110% predicted value)</td>
<td></td>
</tr>
<tr>
<td>FEV$_1$/FVC</td>
<td>78%</td>
<td></td>
</tr>
</tbody>
</table>

Peak expiratory flow rate‡ Daily variability <20%

PD$_{20}$§ >3200 μg

Induced sputum After the work shift While asymptomatic (still exposed at work but taking inhaled steroids) While asymptomatic (not exposed at work) After flour bronchial challenge

Total cell count (x106/ml) 1.0 0.4 0.6 2.3

Non-squamous epithelial cells (%) Neutrophils 9 6 5 4 Eosinophils 40 2 0 54 Macrophages 52 92 95 42

FEV$_1$, forced expiratory volume in 1 s; FVC, forced vital capacity; PD$_{20}$, provocative dose inducing a 20% fall in FEV$_1$.

*House dust mites, pollens, cat and dog dander, moulds such as Alternaria alternata, Aspergillus fumigatus and Cladosporium herbarum.

†Skin prick test positivity: a weal diameter of 5 mm, more than one half of that of the histamine control.

‡Peak expiratory flows measured six times daily for 4 weeks without significant changes at work or away from work.

§Methacholine challenge performed soon after the work shift (in the morning after the night shift) at a maximal dose–response curve.

DISCUSSION

Occupational exposure to isocyanate and flour was the cause of eosinophilic bronchitis in cases 1 and 2, respectively. The condition was characterised by work-related changes in sputum eosinophils that were significant and reproducible. Causative...
agents of eosinophilic bronchitis in the workplace have rarely been established. To date, eosinophil bronchitis has been causally related to occupational agents only in the two patients described here and in two other published case reports. Challenge exposure to latex gloves in a nurse and acrylates in a worker resulted in a marked increase in sputum eosinophilia in the absence of airflow obstruction and bronchial hyper-responsiveness. In a cross-sectional health survey conducted on a mushroom farm, eosinophilic bronchitis was among the causes of chronic cough but a causal relationship between exposure to a specific occupational agent and sputum eosinophilia was not reproducibly demonstrated with specific occupational bronchial challenge.

It is not known why these patients do not have airway hyper-responsiveness despite the eosinophilic bronchial inflammation, nor whether they will progress to typical occupational asthma. A recent prospective follow-up study of patients with eosinophilic bronchitis not related to occupational exposure showed that recurrence of the disease, after an initial remission obtained with inhaled corticosteroids, was associated in some cases with the development of asthma or chronic airflow obstruction. Several hypotheses have been proposed to explain the eosinophilic bronchitis inflammatory response which does not cause bronchial hyper-responsiveness. To examine the missing link between airway inflammation and airway hyper-responsiveness, the intricate relationships between inflammatory cells (eosinophils, lymphocytes, neutrophils), resident cells (mast cells, epithelial cells, macrophages), inflammatory mediators, cytokines and neuropeptides (substance P, neurokinin A, calcitonin gene-related peptide) secreted by the bronchial sensory nerves and bronchial smooth muscle cells need to be sustained. Although eosinophilic bronchitis does not meet the current definition of asthma, it should be regarded as an occupational induced condition when work-related changes in sputum eosinophils are significant and reproducible. The examination of induced sputum should be part of the diagnostic algorithm for workers who have asthma-like symptoms in an occupational setting. It is a further diagnostic tool which complements the objective monitoring of lung function during periods at work and away from work, as well as before and after specific bronchial challenges with occupational agents.

Authors’ affiliations
Fabio Di Stefano, Luca Di Giampaolo, Nicola Verna, Mario Di Gioacchino, Department of Medicine and Science of Ageing, Section of Allergy, Clinical Immunology and Occupational Medicine, University ‘G D’Annunzio’, Chieti, Italy

Competing interests: None declared.

Correspondence to: Dr F Di Stefano, Respiratory Medicine, Presidio Ospedaliero ‘‘G Bernabeo’’, C da S Liberata, 66026 Ortona (Chieti), Italy; distefa.fabio@tiscali.it

Received 21 April 2005
Accepted 30 June 2005
Published Online First 29 July 2005

REFERENCES

BNF for Children 2006, second annual edition

In a single resource:
- guidance on drug management of common childhood conditions
- hands-on information on prescribing, monitoring and administering medicines to children
- comprehensive guidance covering neonates to adolescents

For more information please go to bnfc.org
Occupational eosinophilic bronchitis in a foundry worker exposed to isocyanate and a baker exposed to flour

Fabio Di Stefano, Luca Di Giampaolo, Nicola Verna and Mario Di Gioacchino

Thorax 2007 62: 368-370 originally published online July 29, 2005
doi: 10.1136/thx.2005.045666