Effect of steroids in asthma

Blanching the airways: steroid effects in asthma

An important effect of steroids on angiogenesis in asthma

Effect of steroids in asthma

The vascular changes which occur in airways diseases such as asthma are starting to attract considerable attention from the respiratory research community. In addition to the vascular engorgement which occurs as part of the acute inflammatory process, several groups have demonstrated increased new vessel formation (angiogenesis) in chronic asthma. Not only does this occur in adult asthma, but recent studies suggest it is a prominent feature of childhood asthma, suggesting that vascular remodelling may occur relatively early in the asthmatic process. The increased airway wall thickening produced by the expanded vasculature causes enhanced airway narrowing on stimulation with constrictor agents, thereby contributing to bronchial hyper-responsiveness. Furthermore, the increased blood flow may increase inflammatory cell trafficking and exudation and transudation of cytokines and mediators and contribute to airway hyper-responsiveness by supporting the increased airway smooth muscle mass which is a key feature of asthma histopathology.

There are a number of candidate angiogenic factors for these changes, perhaps the most important of which are vascular endothelial growth factor (VEGF) and angiopoietin-1, distinct molecules which act together at different stages of angiogenic processes in several biological systems. Other molecules with angiogenic potential found in the airways include fibroblast growth factor, and angiogenins and chemokines such as interleukin (IL)-8 and eotaxin. VEGF is subject to dynamic regulation while angiopoietin-1 is less so, and the latter may contribute in a more permissive way to the remodelling process. A number of stimuli can increase VEGF release from lung cells including cigarette smoke, hypoxia and Th1 and Th2 cytokines such as IL-1β, IL-4 and IL-13, remodelling cytokines such as TGFβ and IL6, and vasoactive mediators such as bradykinin and PGE₂. Autocrine production of PGE₂ may mediate the effect of some of these agents, and there is evidence from studies in mouse models to suggest that autocrine nitric oxide production may mediate some (but not all) of the effects of released VEGF in mouse asthma models. Endogenous angiostatic molecules such as endostatin and angiopoietin-2 exert a brake on this process, and the dynamic interplay between these and pro-angiogenic molecules helps shape repair and remodelling. Interestingly, recent studies in vitro with rhinovirus have shown that infection increases VEGF—but not angiopoietin—release, suggesting a mechanism whereby recurrent viral airway infections might contribute to airway remodelling in a cyclical manner. In mouse asthma models, airway VEGF is increased and VEGF receptor inhibitors inhibit cellular influx as well as inhibiting airway hyper-responsiveness and reducing microvascular leakage, consistent with VEGF having an important deleterious effect in asthma. In these and other studies, VEGF appears to regulate inflammatory processes as well as remodelling, which suggests that it is a complex multifunctional molecule with a wide repertoire of effects. There also appears to be a close relation between VEGF and matrix degradation which probably reflects the fact that establishment of

T

The vascular changes which occur in airways diseases such as asthma are starting to attract considerable attention from the respiratory research community. In addition to the vascular engorgement which occurs as part of the acute inflammatory process, several groups have demonstrated increased new vessel formation (angiogenesis) in chronic asthma. Not only does this occur in adult asthma, but recent studies suggest it is a prominent feature of childhood asthma, suggesting that vascular remodelling may occur relatively early in the asthmatic process. The increased airway wall thickening produced by the expanded vasculature causes enhanced airway narrowing on stimulation with constrictor agents, thereby contributing to bronchial hyper-responsiveness. Furthermore, the increased blood flow may increase inflammatory cell trafficking and exudation and transudation of cytokines and mediators and contribute to airway hyper-responsiveness by supporting the increased airway smooth muscle mass which is a key feature of asthma histopathology.

There are a number of candidate angiogenic factors for these changes, perhaps the most important of which are vascular endothelial growth factor (VEGF) and angiopoietin-1, distinct molecules which act together at different stages of angiogenic processes in several biological systems. Other molecules with angiogenic potential found in the airways include fibroblast growth factor, and angiogenins and chemokines such as interleukin (IL)-8 and eotaxin. VEGF is subject to dynamic regulation while angiopoietin-1 is less so, and the latter may contribute in a more permissive way to the remodelling process. A number of stimuli can increase VEGF release from lung cells including cigarette smoke, hypoxia and Th1 and Th2 cytokines such as IL-1β, IL-4 and IL-13, remodelling cytokines such as TGFβ and IL6, and vasoactive mediators such as bradykinin and PGE₂. Autocrine production of PGE₂ may mediate the effect of some of these agents, and there is evidence from studies in mouse models to suggest that autocrine nitric oxide production may mediate some (but not all) of the effects of released VEGF in mouse asthma models. Endogenous angiostatic molecules such as endostatin and angiopoietin-2 exert a brake on this process, and the dynamic interplay between these and pro-angiogenic molecules helps shape repair and remodelling. Interestingly, recent studies in vitro with rhinovirus have shown that infection increases VEGF—but not angiopoietin—release, suggesting a mechanism whereby recurrent viral airway infections might contribute to airway remodelling in a cyclical manner. In mouse asthma models, airway VEGF is increased and VEGF receptor inhibitors inhibit cellular influx as well as inhibiting airway hyper-responsiveness and reducing microvascular leakage, consistent with VEGF having an important deleterious effect in asthma. In these and other studies, VEGF appears to regulate inflammatory processes as well as remodelling, which suggests that it is a complex multifunctional molecule with a wide repertoire of effects. There also appears to be a close relation between VEGF and matrix degradation which probably reflects the fact that establishment of
new vessels requires matrix turnover and that, when the matrix is damaged, new vessels are required for tissue repair.

The study in this issue of *Thorax* by Felts and colleagues (see page 314) addresses an important issue—namely, whether these angiogenic processes are modified by glucocorticoids. The authors undertook a placebo-controlled intervention study with inhaled fluticasone in 35 patients with mild asthma and performed immunohistochemistry and image analysis to obtain quantitative measures of vessels, angiogenic sprouts, VEGF, VEGF receptor 1, VEGF receptor 2 and angioptatin-1 staining in airway biopsy specimens. They also measured VEGF concentrations in lavage fluid. The key findings were that vessel number, VEGF and sprout staining were decreased after 3 months of inhaled steroid treatment. However, no further reduction was seen at 12 months and relatively high doses of fluticasone were required. Their findings suggest that inhaled steroids downregulate angiogenic remodelling in the airways in asthma, associated with decreasing VEGF activity within the airway wall. Interestingly, VEGF levels in lavage fluid were not altered nor were receptor numbers or staining for angioptatin-1. An interesting finding in this study was the fact that the vascular “sprouts”, which these authors have reported previously,26 were also reduced by fluticasone treatment. It would seem likely that these cystic structures in the vascular wall of airway vessels may be newly forming vessels.

Glucocorticoids have also been shown to reduce VEGF release in airway cell systems in culture, although their precise mechanism of action has not been established.25 VEGF regulation is complex and is controlled at both transcriptional and translational levels. Transcription factor binding sites in the VEGF promoter for specificity protein-1 (SP-1) seem to be particularly important, at least in airway smooth muscle,26 although this has not been studied in other airway cells. VEGF mRNA has regulatory elements in both its 3′ and 5′ untranslated regions which control its translation and are potential sites for post-transcriptional regulation.44 It is not clear whether the effect of glucocorticoids on VEGF production and angiogenesis is mediated by an effect on transcriptional or translational processes.

If glucocorticoids inhibit bronchial vascular changes, what is known about other asthma treatments? Interestingly, long-acting β-agonists have been shown to reduce the vascularity of asthmatic airways in vivo.1 Although there is some evidence that it might be due to a reduction in VEGF,14 an alternative explanation might be a reduction in the level of pro-angiogenic chemokines such as IL817 and eotaxin.19 The leucotriene antagonist pranlukast reduced sputum VEGF levels in a small study of untreated asthmatic subjects but had no additional effect when given concomitantly with inhaled steroids.20

Most studies on bronchial angiogenesis to date have used cell culture systems with relevant airway cells in vitro or biopsy studies such as those of Felts et al.21 Recent reports of new three-dimensional cell culture systems for studying angiogenesis in vitro22 and reports using magnetic resonance imaging in animal models in vivo45 might provide additional tools, allowing a greater understanding of this important process over the next few years.

Authors’ affiliations

Alan J Knox, Karl Deacon, Rachel Clifford, Division of Respiratory Medicine, Centre for Respiratory Research, Clinical Sciences Building, Nottingham City Hospital, Nottingham, UK

Correspondence to: Professor A J Knox, Division of Respiratory Medicine, Centre for Respiratory Research, Clinical Sciences Building, Nottingham City Hospital, Hucknall Road, Nottingham NG5 1PB, UK; alan.knox@nottingham.ac.uk

Competing interests: None.

REFERENCES

Bimodality surveillance of high-risk patients for lung cancer

Bimodality surveillance of high-risk patients for lung cancer

Gordon H Downie

Are new diagnostic strategies providing answers?

Thoracic oncology providers confronted with the task of diagnosing and following patients at risk for cancer of the lung face a number of major dilemmas, some of which directly affect the ability to diagnose. First, the majority of patients with lung cancer are diagnosed at a late stage and <15% survive 5 years, so a degree of nihilism is present in patients, providers and policy makers. Second, risk paradigms are changing, from smoking only to occupational, environmental or home carcinogens to the risk associated with premalignant airway changes. Third, advances in early diagnostic strategies are changing the risk associated with premalignant lung cancers detected in this study

1. Premalignant changes are common (66% of the 169 patients receiving all components of surveillance) in this high-risk cohort.

2. AFB is reasonable in patients with atypia in CSC; however, CSC was inadequate for detection of premalignant cytology when frank carcinoma was not present.

3. Screening and surveillance are very different and surveillance of a select population may be a superior strategy in lung cancer management.

4. Regardless of the histology of the lung cancers detected in this study (>50% were adenocarcinoma), the majority of patients had central airway pre-malignant transformation.

5. Spiral CT scan protocols are not adequate at this time for detecting central airway disease by themselves.

6. Central airway pre-malignant lesions appear to be predictive of the presence of peripheral adenocarcinoma identified by SCT.

Several of these observations or conclusions have not been supported by other articles in the field. Haubinger et al.2 performed a prospective, randomised, multicentre trial comparing white light bronchoscopy (WLB) with or without AFB. The high-risk group defined by chronic obstructive pulmonary disease plus occasional exposure failed to demonstrate severe dysplasia or carcinoma-in-situ (CIS), although it was unclear to what extent metaplasia or mild dysplasia were seen in this cohort. Swensen et al.20 and Bechtel et al.21 in two separate studies used bimodality testing using CSC as one portion of their testing and suggested a more significant contribution for CSC in lung cancer detection than was suggested by Loewen et al.2 However, because of different study designs including inclusion criteria, biopsy and statistical methods and pathology review variations, it may be nearly impossible to compare findings from one study to another.

Although Loewen et al. raise several compelling clinical questions in their paper, the most pivotal may well be management issues of airway cellular transformation including dysplasia and CIS. The diagnosis, progression and treatment of dysplasia and CIS, especially in high-risk populations, are demanding more clinical attention to determine surveillance strategies and may affect overall outcomes of lung cancer in the near future. Intense interest in this topic was indicated when most sessions at the 11th World Congress on Lung Cancer in...
Blanching the airways: steroid effects in asthma

Alan J Knox, Karl Deacon and Rachel Clifford

doi: 10.1136/thx.2006.073221

References
This article cites 39 articles, 13 of which you can access for free at:
http://thorax.bmj.com/content/62/4/283#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Asthma (1782)
- Child health (843)
- Tobacco use (youth) (191)
- Health education (1223)
- Histopathology (28)
- Smoking (1037)
- Tobacco use (1039)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/