various potential confounders across the life course. What about children with respiratory symptoms early in life? Studies have shown that there is an association between initial airway symptoms and later lung function and respiratory illnesses, and that subjects with asthma have persistent reduced lung function. Finally, did the authors account for family history of asthma and/or atopy or allergic sensitisation? In my opinion, many confounders and factors that may have an effect on the outcome were not addressed adequately in this paper, so the conclusions drawn may not be relevant.

Chandra Sekhar Devulapalli
Department of Paediatrics, Ringerike Hospital, NO-3504 Hamar, Norway; c.s.devulapalli@medisin.uio.no
Competing interests: None.

References

Impairment of the swallowing reflex in exacerbations of COPD

An exacerbation of chronic obstructive pulmonary disease (COPD) has a serious impact on disease progression and is associated with high medical costs, but the cause of about one-third of exacerbations cannot be identified. Adequate protective reflexes in the airways play an important role in the prevention of aspiration of bacteria-containing oropharyngeal or gastric secretions. Impairment of these reflexes, such as the swallowing reflex, therefore represents a potential risk factor for exacerbations of COPD. We have conducted a cross-sectional survey to evaluate the prevalence of impairment of the swallowing reflex in patients with COPD and to determine whether this is a risk factor for COPD exacerbations.

Fifty clinically stable patients with COPD were enrolled from the outpatient clinic of Ishinomaki Red Cross Hospital, Ishinomaki, Japan. Patients who were current smokers and those with oral corticosteroid use, oral and pharyngeal cancer, previous head and neck surgery, neuromuscular disease and oesophageal disease were excluded. Twenty-five patients (22 men and 3 women) had at least one exacerbation during the previous year, while the other 25 patients (21 men and 4 women) were stable. In the exacerbation group, the patients had 2.4 (range 1–10) exacerbations per year, and 20 patients (80%) required hospital admission. There was no significant difference between the stable group and the exacerbation group in age (mean (SE) 75.0 (1.3) years vs 77.2 (1.0) years), forced expiratory volume in 1 s (FEV1) (mean (SE) 1.11 (0.11) l vs 1.07 (0.09) 1), percentage predicted value of FEV1 (mean (SE) 47.1 (3.7)% vs 50.1 (3.7)%). All patients were eating an entirely oral diet without complaining of dysphagia prior to enrolment.

We evaluated the swallowing reflex on the basis of the latency of response to the onset of the swallowing action timed from the injection of 1 ml distilled water into the pharynx through a nasal catheter. The mean (SE) latency of the swallowing reflex was significantly longer in the exacerbation group than in the stable group (8.6 (1.3) s vs 2.6 (0.3) s, p<0.001; fig 1). We classified a response as normal or impaired according to whether the swallowing reflex was induced within 3 s of the injection. In the exacerbation group 22 of 25 patients (88%) exhibited an impaired response, compared with 8 of 25 patients (32%) in the stable group (p<0.001). Impairment of the swallowing reflex was significantly associated with an exacerbation of COPD (relative risk 2.8, 95% confidence interval 1.5 to 5.0).

The results indicate that there is a high incidence of impairment of the swallowing reflex in patients with COPD. CT is highly sensitive for the detection of small amounts of intravascular air, which can be found in the central veins in up to 23% of patients on contrast-enhanced CT and it rarely results in symptoms unless there is a right to left shunt. It is introduced during insertion of the venous catheter or more frequently accidental injection of air during intravenous injections (fig 1).

Normal lung tissue receives dual blood supply from pulmonary and bronchial arteries. Pulmonary infarct is infrequent after acute obstruction of the pulmonary artery because the bronchial circulation plays an important role in intravascular air and CT

Dr Ku and co-workers wrote an interesting article describing a patient with an air embolism in the superior vena cava surrounding a central venous catheter (CVC) and bilateral pulmonary opacities recognised on contrast enhanced chest CT. The round pneumonic opacity was noted on chest radiograph soon after insertion of the CVC. From these findings, they suggest that this is a rare case of venous air pulmonary infarction mimicking round pneumonia. However, further evidence should be obtained to support this assumption.

Acknowledgements
The authors thank Dr Naoya Fujino for data collection.

Seiichi Kobayashi
Department of Respiratory Medicine, Ishinomaki Red Cross Hospital, Ishinomaki, Japan

Hirosi Kubo
Department of Geriatrics and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan

Figure 1 Air bubble trapped around the central venous catheter in the inferior vena cava (arrow) was incidentally noted on non-enhanced CT scan of the abdomen.

Funding: None
Competing interests: None.

References
in preserving lung tissue. In about 15% cases of acute pulmonary embolism, the collateral supply by bronchial arteries is insufficient. Pulmonary infarcts may be observed several hours later.

The small air bubbles in the superior vena cava may originate from intravenous contrast media injection during CT scan and round pneumonia is a reasonable diagnosis of pulmonary opacities in this case.

W-J Lee, K-L Liu, S-J Chen
Department of Medical Imaging, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan

W-J Lee
Department of Medical Imaging, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan

Correspondence to: Dr S-J Chen, Department of Medical Imaging, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; james_5586@hotmail.com
doi: 10.1136/thx.2007.084673

Reference

PULMONARY PUZZLE

Answer
The patient was submitted to lung and prostate biopsies which showed pulmonary alveolar proteinosis (PAP) and embryonal rhabdomyosarcoma (fig 1A and B). A radical cystoprostatectomy with an ileal conduit was performed without curative intention due to lymph node metastasis and 1 month later the patient underwent pelvic radiotherapy and doxorubicin-based chemotherapy. The patient refused treatment of the pulmonary disease. There was progression of the lymph node metastasis and no improvement in the pulmonary symptoms or radiological findings after treatment. The patient died 1 year after surgery as a result of intra-abdominal spread of the neoplasm.

PAP is a rare cause of respiratory failure which results from accumulation of lipoproteinaceous material in the alveolar space. It is believed to be caused by dysfunction of the clearance of surfactant from the alveoli by macrophages. PAP is associated with high levels of autoantibodies against granulocyte-macrophage colony stimulating factor (GM-CSF) in the blood and tissues. Neutralisation of the biological activity of GM-CSF may cause neutrophil and alveolar macrophage dysfunction, which would explain the pathogenesis of PAP. It may be secondary to many conditions such as acute silicosis and other inhalation syndromes, immunodeficiency disorders, infections, haematological malignancies (predominantly myelogenous leukaemias), metastatic melanoma to lung and breast cancer, but no association with prostate cancer is known.

These associated diseases and GM-CSF neutralisation suggest that PAP is characterised by defective immune function.

Embryonal rhabdomyosarcoma of the prostate occurs predominantly in male infants and children and is a rare and highly malignant tumour. Fewer than 20 cases of prostate rhabdomyosarcoma have been reported in adults. In the present case there was a temporal association between the urinary and pulmonary symptoms. The PAP may have been a secondary manifestation of the prostate tumour, but its treatment did not improve the pulmonary symptoms or the radiological findings.

From the question on page 1002
doi: 10.1136/thx.2007.083717a

References

Figure 1 (A) Alveolar proteinosis (H&E stain, magnification 100×). (B) Embryonal rhabdomyosarcoma of prostate with myogenin positivity (immunohistochemical stain, magnification 400×).
Intravascular air and CT

W-J Lee, K-L Liu and S-J Chen

Thorax 2007 62: 1017-1018
doi: 10.1136/thx.2007.084673

Updated information and services can be found at:
http://thorax.bmj.com/content/62/11/1017.2

These include:

References
This article cites 4 articles, 0 of which you can access for free at:
http://thorax.bmj.com/content/62/11/1017.2#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/