
OCCASIONAL REVIEW

Potential therapeutic role for statins in respiratory disease
E Hothersall, C McSharry, N C Thomson
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thorax 2006;61:729–734. doi: 10.1136/thx.2005.057976

Statins reduce cholesterol levels by inhibiting 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) reductase and
have an established role in the treatment of atherosclerotic
disease. Recent research has identified anti-inflammatory
properties of statins. Statins appear to reduce the stability
of lipid raft formation with subsequent effects on immune
activation and regulation, and also prevent the prenylation
of signalling molecules with subsequent downregulation of
gene expression. Both these effects result in reduced
cytokine, chemokine, and adhesion molecule expression,
with effects on cell apoptosis or proliferation. This review
considers the evidence for the anti-inflammatory properties
of statins in the lung, and how these effects are being
applied to research into the role of statins as a novel
treatment of respiratory diseases.
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S
tatins are a class of cholesterol lowering
drugs that decrease mortality from cardio-
vascular disease1–3 and stroke.4 5 The bene-

ficial effects of statins have been attributed to
reduced cholesterol biosynthesis through compe-
titive inhibition of the enzyme 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) reduc-
tase (fig 1). These studies also showed that
treatment with statins provided greater protec-
tion than predicted from cholesterol reduction.6

Evidence has accumulated that statins lower C-
reactive protein (CRP),7–10 a key indicator of
inflammation, which itself is an independent
risk factor for cardiovascular mortality and
morbidity.11 12 This reduction in CRP is probably
a consequence of the ability of statins to reduce
the production of interleukin (IL)-6,13 14 the
cytokine which activates the acute phase CRP
response.15 Based on these observations, it has
been proposed that the clinical effectiveness of
statins might be due to a combination of
functions including cholesterol reduction, anti-
inflammatory, antithrombotic and immunomo-
dulatory effects.

The purpose of this review is to outline the
evidence for the anti-inflammatory properties of
statins using observations from ex vivo and in
vitro cell function, from experimental disease
models, and clinical trials, and to suggest how
these may be applicable to therapeutic advances
for inflammatory lung disease.

MECHANISM OF ACTION
Statins have several possible mechanisms of
action that may be interrelated which result in
the reduction of inflammation. These include (1)

modulating the cholesterol content and thus
reducing the stability of lipid raft formation and
subsequent effects on the activation and regula-
tion of immune cells, and (2) preventing the
prenylation of signalling molecules and subse-
quent downregulation of gene expression, both
resulting in reduced expression of cytokines,
chemokines, and adhesion molecules with
effects on cell apoptosis or proliferation.

Other less well known anti-inflammatory prop-
erties of statins have been described, including
antioxidant effects of some statins related to their
ability to scavenge oxygen derived free radicals.16

Lipid rafts formation
Lipid rafts are small cell membrane structures or
microdomains, rich in cholesterol and glyco-
sphingolipid, which house intracellular enzymes,
mainly kinases. These lipid rafts can be translo-
cated by the actin cytoskeleton which controls
their specific redistribution, clustering, and stabi-
lisation within the cell membrane. When these
rafts are assembled they form critical sites for
processes such as cell movement, intracellular
transport, or signal transduction. Lipid rafts act as
platforms, bringing together molecules essential
for the activation of immune cells, but also
separating such molecules when the conditions
for activation are not appropriate. Several strands
of evidence suggest that the inhibition of choles-
terol synthesis by statins disrupts these lipid rafts
and thereby influences the function of lympho-
cytes.17 A central component of the interaction
between lymphocytes and antigen presenting
cells, which results in T cell activation, is inter-
feron c (IFN-c) induced upregulation and assem-
bly of the major histocompatibility complex class
II (MHC-II). Statins reduce IFN-c production by
Th1 cells18 and thus act as repressors of MHC-II
mediated T cell activation.19 20

Prenylation and regulation of cytokine synthesis
Altered cytokine synthesis observed with statin
therapy may be a consequence of altered lipid
raft formation. However, there is an alternative
or additional pathway of cytokine synthesis that
may be affected by statins. The mevalonate
synthetic pathway mediated by HMG-CoA
reductase is crucial for the biosynthesis of

Abbreviations: CCL2, chemoattractant chemokine ligand
2; COPD, chronic obstructive pulmonary disease; CRP, C-
reactive protein; CTGF, connective tissue growth factor;
HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A;
IFN-c, interferon c; ICAM-1, intercellular adhesion
molecule 1; IL, interleukin; IPF, idiopathic pulmonary
fibrosis; LFA-1, lymphocyte function associated antigen 1;
LPS, lipopolysaccharide; MHC-II, major histocompatibility
complex class II; MMP, metalloprotease; NF-kB, nuclear
factor kB; NK, natural killer; TGF-b, transforming growth
factor b; TNF-a, tumour necrosis factor a
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isoprenoids (fig 1), which are essential for normal cellular
proliferation and activity. Farnesyl pyrophosphate is a later
intermediate on this pathway and serves as a precursor for
the synthesis of various isoprenoids—for example, geranyl-
geranyl or farnesyl groups—which prenylate proteins
through covalent links. These can anchor these proteins to
lipid rafts. Many prenylated proteins play important roles in
the regulation of cell growth, cell secretion, and signal
transduction. Thus, by inhibiting prenylation, statins affect
many cell processes involved in inflammation.

ANTI-INFLAMMATORY EFFECTS OF STATINS ON
NON-RESPIRATORY CELLS AND DISEASES
These two complementary mechanisms of prenylation and
lipid raft stability allow statins to affect the function of many
different cells and to attenuate inflammation in experimental
models of disease.

Cell adhesion molecules
Statins interfere with cell binding by reducing leucocyte–
endothelial cell adhesion.21 22 This occurs because statins
attenuate the upregulation of P-selectin normally seen on
activated endothelial cells,23 and they also interfere with
monocyte24 and lymphocyte attachment to endothelium by
suppressing intercellular adhesion molecule 1 (ICAM-1) and
lymphocyte function associated antigen 1 (LFA-1) interac-
tions.25 Statins have been shown to decrease the expression of
the receptor for chemoattractant chemokine ligand 2 (CCL2)
expression on endothelial cells in rats26 and on monocytes
from pigs,27 and thereby reduce monocyte adhesion to
vascular endothelium.

Cytokine and mediator release
Statins alter protein expression, seen in altered cytokine release.
In vitro experiments looking at spontaneous and lipopolysac-
charide induced secretion of IL-6 and tumour necrosis factor
(TNF)-a in human cell lines showed reduced output due to
statins in both cases.13 28 Fluvastatin and simvastatin (but not
pravastatin) reduce production of IL-6 and IL-1b in human
umbilical vein endothelial cells.29 Atorvastatin has also been
shown to inhibit production of TNF-a.30 Lovastatin induces Th2
production of IL-4, IL-5, and IL-10 in vitro.18 Increased
prostacyclin31 and decreased endothelin32 production are seen
in human endothelial cells after statin treatment.

Cellular apoptosis or proliferation
Statins increase apoptosis, as shown in human vascular
endothelial cells33 and in plasma cell lines from patients with

multiple myeloma.34 Proliferation of T lymphocytes and B
lymphocytes is inhibited by statins,35 36 and statins can alter
the ratio of Th1 to Th2 lymphocytes; cerivastatin, simvastatin,
lovastatin, and atorvastatin can promote Th2 polarisation
through suppression of Th1 lymphocyte development and
augmentation of Th2 lymphocyte development from naive
CD4+ T cells when primed in vitro.37 Statins also reduce the
proliferation of cardiac fibroblasts in rat and rabbit models.38

Antioxidant effects
Metabolites of atorvastatin have been shown to possess
potent antioxidative properties,39 40 and to protect very low
density lipoprotein (VLDL), low density lipoprotein (LDL),
and high density lipoprotein (HDL) from oxidation.41

Simvastatin acts as an antioxidant in rat liver microsomes,42

vascular smooth muscle,43 and human lipoprotein particles,44

which may contribute to its anti-atherogenic effect.

Experimental models of disease
Statins have diverse effects on many chronic animal models of
autoimmune disease. In models of systemic lupus erythema-
tosus the administration of atorvastatin resulted in a
significant reduction in serum IgG anti-dsDNA antibodies
and decreased proteinuria, reduced glomerular immunoglo-
bulin deposition, and glomerular injury. Disease improvement
was paralleled by decreased expression of MHC-II on mono-
cytes and B lymphocytes. T cell proliferation was impaired
by atorvastatin in vitro and in vivo and a significant decrease
in glomerular MHC-II expression was also observed.45

Cerivastatin and simvastatin have also been shown to inhibit
the human neutrophil response to ANCA in vitro.46

In experiments with collagen induced arthritis in mice,
simvastatin was given intraperitoneally either before (pro-
phylactically) or after (therapeutically) induction of arthritis
and a marked reduction in serum IL-6 and IFN-c was seen,
with a significant histological improvement.47

In a mouse model of autoimmune retinal disease, treat-
ment with 20 mg/kg/day intraperitoneal lovastatin over
7 days suppressed clinical ocular pathology, retinal vascular
leakage, and leucocytic infiltration into the retina.48 The effect
was reversed by co-administration of mevalonolactone, the
downstream product of HMG-CoA reductase.

Clinical studies
A double blind, randomised, placebo controlled trial examined
the efficacy of atorvastatin 40 mg daily for 6 months in
rheumatoid arthritis. At the end of that period, patients who
had received statin were found to have decreased plasma levels
of lipids, fibrinogen and viscosity. The disease activity score
improved significantly on atorvastatin treatment compared
with placebo. CRP levels and erythrocyte sedimentation rate
reduced by 50% and 28%, respectively, relative to placebo.49

Different statins may have different anti-
inflammatory properties
It has recently become apparent that the different families of
statins may have different biochemical functions. Kiener and
colleagues50 showed that lipophilic statins such as atorvasta-
tin and simvastatin have a much greater effect on inflam-
matory responses in human and mouse models than the
hydrophilic pravastatin. Similarly, when looking at sensitisa-
tion of human smooth muscle cells to apoptotic agents,
lovastatin and simvastatin had a powerful sensitising effect,
atorvastatin had less of an effect, and pravastatin had no
activity.51 There is also a dose-response effect—for example,
cerivastatin is much more potent than fluvastatin in blocking
NF-kB activation in human blood monocytes.52 Some statins
have differing effects on protein expression—for example, in
monocytes stimulated by lipopolysaccharide (LPS), pravas-
tatin and fluvastatin may induce production of TNF-a, IFN-c,

Acetyl-CoA + Acetoacetyl-CoA
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Isopentenyl-pyrophosphate
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Figure 1 Cholesterol biosynthesis pathway showing potential effects of
inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)
reductase by statins, causing a decrease in prenylation of signalling
molecules as well as derivatives from mevalonate and cholesterol.
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and IL-1853 54 whereas atorvastatin and simvastatin inhibit
production of TNFa.13 14 30 55

It is therefore important to recognise that all statins may
not have the same therapeutic potential. For example, a
clinical study in 27 healthy volunteers found significant
differences between the ex vivo immunological responses
after atorvastatin and simvastatin treatment. Atorvastatin led
to a significant downregulation in the expression of human
leucocyte antigen (HLA)-DR and of the CD38 activation
marker on peripheral T cells, whereas simvastatin upregu-
lated both these molecules. In contrast, superantigen
mediated T cell activation was inhibited by simvastatin and
enhanced by atorvastatin.56

POTENTIAL THERAPEUTIC ROLE FOR STATINS IN
RESPIRATORY DISEASE
The therapeutic effect of statins on cardiovascular and
autoimmune disease seems to be broadly anti-inflammatory,
which is also likely to apply to lung diseases in which there is
an inflammatory component (fig 2).

Cellular inflammatory processes in the lung
There are several inflammatory processes in the lung that
may be susceptible to the effects of statins.

Statins could affect the chemokine and adhesion molecule
directed migration of inflammatory cells from blood into the
airways.53 57–59 Since both eosinophils and macrophages
express the adhesion molecule LFA-1, this offers a potential
target for modification of airway inflammation. Treatments
other than statins targeted at reducing the expression of LFA-
1 have been effective in decreasing airway eosinophilia in a
mouse model of allergic asthma,60 and have reduced sputum
eosinophilia after allergen challenge in asthmatic patients.61

Since statins can inhibit LFA-1/ICAM-1 interaction, as seen
in HIV,25 there is potential for statins to have an equivalent
effect in asthma in which the pathophysiology is associated
with eosinophil accumulation. Lovastatin has recently been
shown to inhibit human alveolar epithelial production of IL-
8,62 which might also contribute a beneficial effect of statins

in the treatment of neutrophil associated inflammatory
diseases of the lungs.

The observation that statins increase eosinophil apoptosis
in humans63 suggests a further therapeutic role. The
mechanism of this is probably due to the rapid reduction of
cellular expression of CD40 after statin administration and
this strongly inhibits eosinophil survival.64 Similarly, the
neutrophilia associated with a mouse model of acute lung
injury is markedly reduced with lovastatin treatment,65 and
this modulation of neutrophil apoptosis may prove beneficial
in other inflammatory lung diseases, such as smokers with
asthma or chronic obstructive pulmonary disease (COPD)
where neutrophils are present and where corticosteroid
treatment may be of limited benefit. In addition to induction
of apoptosis, statins (in this case lovastatin) also enhance the
clearance of apoptotic cells by human and mouse macro-
phages, a statin-specific effect reversible with mevalonate.66

Statins could affect the activation and proliferation of a
variety of cells associated with lung inflammation. For
example, statins suppress Th1 cell activation and IFN-c
production, as seen in a recent trial in rheumatoid arthritis49

and, by analogy, this treatment could decrease the IFN-c
dependent pathology of chronic asthma and pulmonary
tuberculosis. Similarly, statins decrease natural killer (NK)
cell activity in treated transplant patients,67 and this might be
relevant to the pathogenesis of asthma in which NK cells may
have a pathogenic role.68 69 The decrease in expression of
MHC-II induced by statins has been observed on monocytes,
macrophages, and on B lymphocytes in mice,45 which implies
a widespread downregulatory effect on presentation and
immune response to inhaled or lung associated antigens.

Statins may also have a role in attenuating the tissue repair
and remodelling consequences of chronic aberrant immune
activation and inflammation. For example, statins inhibit the
proliferation of human airway smooth muscle70 and lower the
expression of the profibrogenic cytokine transforming growth
factor (TGF)-b1.71 Statins also reduce the tissue damage and
cellular changes associated with cigarette smoking. The
mechanism of this appears to be related to the reduction by
statins of the production of matrix metalloprotease (MMP)-9
and airway remodelling in smoking rats72 and rabbits,73 and
in human macrophages74 and monocytes30 from smokers.
Other MMPs may also be reduced.73 75–77 By targeting this key
aspect of remodelling, this indicates a potential therapeutic
role for statins in fibrotic lung diseases.

Finally, it is worth bearing in mind the different
pharmacological properties between statins. For example,
lovastatin seems to increase lymphocyte secretion of IL-4 and
IL-5 in a mouse model of multiple sclerosis18 and therefore
this particular statin may be of limited use in asthma where
these cytokines are directly implicated in the pathogenesis.

Statin treatment of human and experimental
respiratory diseases
Asthma
Atopic asthma is a chronic inflammatory condition of the
airways characterised by airway hyperresponsiveness,
inflammatory infiltrates in the bronchial walls containing
lymphocytes and eosinophils, and elevated serum IgE levels.
Th2 lymphocytes are thought to play a key role in the
initiation and perpetuation of this airway inflammation,78–80

mediated by the functions of their signal cytokines such as
IL-3, IL-4, IL-5, and IL-6. There is now evidence that Th1 cells
may also contribute to disease,81 82 and IFN-c secretion may
exacerbate airway inflammation in chronic asthma.83

The potential benefits of statin therapy on inflammatory
airway disease were demonstrated in a mouse model of
allergic airways disease.84 In this model, airway eosinophilia
was elicited using ovalbumin (OVA) as the allergen.

STATINS

Structural cells

Inflammatory cells

Potential anti-inflammatory effects in selected cells:

adhesion,   cytokine and mediator production,
proliferation,   apoptosis,   oxidative stress

Endothelial cell Epithelial cell Smooth muscle Fibroblast

T lymphocyte Neutrophil Eosinophil MacrophageAntigen
presenting cell

Figure 2 Potential anti-inflammatory effects of statins on different
structural and inflammatory cells within the lungs.
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Simvastatin given before each OVA challenge caused a
reduction in inflammatory cell infiltrate and eosinophilia in
bronchoalveolar lavage fluid and a decrease in the OVA-
specific production of IFN-c, IL-4 and IL-5 by thoracic node
lymphocytes in vitro (fig 3). The same anti-inflammatory
effects of pravastatin have been reported in a similar
experimental model of allergic airway inflammation.85 The
anti-inflammatory properties of statins observed in animal
models of allergic asthma84 and in smoking induced lung
disease86 suggest that statin treatment could improve asthma
control in smokers with asthma who are insensitive to
treatment with corticosteroids.87

COPD
In a rat model of smoking induced emphysema, Lee and co-
workers72 found that simvastatin inhibited lung parenchymal
destruction and peribronchial and perivascular inflammatory
cell infiltration. Induction of MMP-9, a major inflammatory

mediator, was reduced in the same model when the
experiment was repeated using human lung microvascular
endothelial cells in vitro. Pulmonary vascular remodelling
was prevented and the decrease in endothelial nitric oxide
synthase expression induced by smoking was inhibited.72 In a
mouse model of emphysema, simvastatin reduced mRNA
expression of IFN-c, TNF-a and MMP-12 in the whole lung
and reduced the numbers of neutrophils and lymphocytes
and the concentration of TNF-a in bronchoalveolar lavage
fluid,88 indicating reduced inflammation and remodelling.

Pulmonary hypertension
Experiments with rat pulmonary arterial fibroblasts indicate
that statins decrease the normal proliferation in response to
hypoxia.89 Statins also induce apoptosis of pulmonary
vascular cells, mediated by inhibiting the prenylation of the
small GTP-binding proteins.90 This—in addition to an
improvement in pulmonary artery pressure, ventricular and
blood vessel remodelling, and polycythaemia seen in a rat
model of pulmonary hypertension91—confers a significant
survival advantage following treatment with simvastatin.72 92

An open label clinical case series of patients with pulmonary
hypertension showed that simvastatin delays disease pro-
gression and may improve survival.93

Idiopathic pulmonary fibrosis
Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial
lung disease commonly affecting adults from middle age
onwards. The prognosis is invariably poor, with a median
survival of 3–5 years from diagnosis and no currently available
efficacious treatment. Features of the pathogenesis of IPF are
cell proliferation, collagen deposition, angiogenesis, and
fibroblast differentiation into the profibrogenic myofibroblast
phenotype.94 This is mediated through connective tissue
growth factor (CTGF), an autocrine growth factor which is
induced by TGF-b1. Early experimental data suggest that
simvastatin could modify critical determinants of the profi-
brogenic machinery responsible for the aggressive clinical
profile of IPF, and could potentially prevent adverse lung
parenchymal remodelling associated with persistent myofi-
broblast formation by inhibiting CTGF gene and protein
expression and overriding the induction by TGF-b1.95 This
hypothesis has recently been tested in a clinical trial of
lovastatin and angiotensin converting enzyme inhibitors in
IPF, but preliminary data showed no improvement in
survival.96

Acute lung injury
In a model of acute lung injury, mice treated with
simvastatin showed decreased lung permeability and a
significant reduction in NF-kB mediated gene transcription,
suggesting a potential role for statins in the management of
this disease.97 In this model the mice were exposed to
aerosolised bacterial LPS followed by intratracheal keratino-
cyte derived chemokine, inducing an airspace neutrophil
influx which was reduced by simvastatin. Reduced parench-
ymal myeloperoxidase and microvascular permeability, indi-
cators of inflammation, were also seen with lovastatin, as
well as reduced concentrations of pro-inflammatory cyto-
kines in airway fluid and serum.97

Ex vivo studies of neutrophils isolated from lovastatin
treated mice confirmed that the inhibitory effects were statin
dependent, affecting Rac activation, actin polymerisation,
chemotaxis and bacterial killing. This anti-inflammatory
effect, which is beneficial to acute lung injury, may have
detrimental effects on the normal antibacterial clearance
mechanisms of the lung. For example, the innate pulmonary
clearance of Klebsiella pneumoniae was inhibited by lovastatin
and the blood dissemination of this organism was
enhanced.97 In other words, lovastatin appears to decrease

Figure 3 Histological evidence of decreased lung inflammation in mice
treated with simvastatin. (A) Naive mouse given saline challenge. (B)
Ovalbumin antigen challenged mouse showing peribronchial and
perivascular inflammatory infiltrates with eosinophils and mucosal
hyperplasia. (C) Ovalbumin challenged mouse treated with simvastatin
showing a reduction in inflammatory infiltrates compared with (B). Stain:
haematoxylin and eosin; magnification 6200. Reproduced with
permission from McKay et al.84 E The American Association of
Immunologists Inc, 2004.
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pulmonary inflammation but there may be an immunological
cost in inhibiting host defence and promoting infection.65

Community acquired pneumonia
The concern for the possible adverse effect of statins in
reducing resistance to lung infection was partly addressed in a
retrospective cohort study of patients with community
acquired pneumonia which showed that statins were asso-
ciated with a 22% decrease in overall 30 day mortality (from
28% to 6%). This remained significant even after adjustment
for potential confounders such as previous co-morbidity which
would normally be expected to increase mortality.98 However,
there is still a need to monitor prospectively the effects of statin
treatment on the immune response.

Lung transplantation
The outcomes in lung transplantation were compared
between 39 patients taking statins for hyperlipidaemia
(mainly atorvastatin and pravastatin) and 161 untreated
controls. Acute rejection was less frequent, bronchoalveolar
lavage showed lower total cellularity as well as lower
proportions of neutrophils and lymphocytes, and survival
was 91% compared with 54% in controls.99 This raises
intriguing possibilities of an immunosuppressive role for
statins, which suggests we are only beginning to explore the
many applications for these drugs.

CONCLUSIONS
New drugs for the treatment of respiratory diseases are
needed. The anti-inflammatory properties of statins are
numerous and complex and, although incompletely under-
stood, there is tantalising evidence that they might prove to be
of clinical benefit in the treatment of a range of inflammatory
lung diseases. What is needed now is to extend the evidence of
efficacy of statins in different inflammatory lung diseases,
initially in the form of small scale proof-of-concept clinical
trials. The choice of outcome measures used to assess efficacy
will need to be carefully considered for each disease, since
statins may influence biomarkers of inflammation to a greater
extent than more conventional clinical end points. If the
results of these clinical trials are encouraging, larger studies
will be required to establish the effectiveness and adverse side
effect profile of statin treatment in individual diseases.
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