persistent inflammation in bronchial biopsy specimens, while the number of sputum neutrophils and lymphocytes and the levels of interleukin-8 and eosinophilic cationic protein actually increased at 1 year. The duration of smoking cessation is also important because, with a longer duration, the CD8 cell numbers decrease, plasma cell numbers increase, while other inflammatory cells persist.9 Since oxidative stress (as reflected in protein carbonyl levels) also persists after smoking cessation, the relationship between oxidative stress, duration of cessation, and inflammatory markers needs further study.

There has been renewed interest in obstructive lung disease in the elderly. This population is at an increased risk of both pulmonary and systemic injury from tobacco smoke. The Health Aging and Body Composition study is a prospective cohort of individuals aged 70–79 years. In well functioning elderly subjects with or without obstructive lung disease, interleukin-6 is associated with reduced FEV1, quadriceps strength, and exercise capacity.9 The findings of Nagai et al add the possibility that increasing oxidative stress with age may also contribute. The potential that oxidative stress increases with age is not too surprising. Older smokers are exposed to cigarette smoke over many years. Even in a healthy volunteer population, neutrophil counts in induced sputum increased with age, possibly as a result of exposure to pollutants. Smoking leads to age related decreases in antioxidant activity in alveolar macrophages. There have been few attempts at targeting oxidative stress via supplementing antioxidants or boosting endogenous levels in the older smoker, but this certainly should be evaluated. As already mentioned, the benefits of smoking cessation can be seen regardless of age and include a decreased rate of decline in FEV1, a lower risk of stroke or myocardial infarction, and meaningful life extension. Surprisingly, the elderly are less likely to receive smoking cessation advice than their younger counterparts.10 Clearly, as more research is performed on pathogenetic mechanisms such as oxidative stress in the elderly smoker, simultaneous attention must be paid to prevention.

Correspondence to: Dr J F Donohue, Professor of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina at Chapel Hill, NC 27599-7020, USA; jfdonohue@med.unc.edu

Funding: none.

Competing interests: none declared.

REFERENCES

Post-infectious bronchiolitis obliterans in children

Insights into post-infectious bronchiolitis obliterans in children

K J Smith, L L Fan

New information contributing to our understanding of risk factors predisposing to bronchiolitis obliterans in children

Bronchiolitis obliterans (BO) is a rare form of chronic obstructive lung disease that follows an insult to the lower respiratory tract.1 It is characterised by inflammation and fibrosis of the terminal and respiratory bronchioles that lead to narrowing and/or complete obliteration of the airway lumen. Pathologically, two forms of BO are recognised, and these may be part of a continuum. Proliferative bronchiolitis is characterised by intraluminal exudates, whereas constrictive bronchiolitis is characterised by alterations in the walls of the bronchioles ranging from inflammation to fibrosis and, ultimately, to complete obliteration of the lumen.2 The histological findings of constrictive bronchiolitis are a common end point for many disorders that are associated with airway epithelial injury including allograft recipients (lung, heart-lung, and bone marrow), previous lower respiratory tract infection (adenovirus,3,4 influenza,7 parainfluenza, measles, respiratory syncytial virus,6 or Mycoplasma pneumoniae5,6), collagen vascular disease (especially rheumatoid arthritis and Sjogren’s syndrome), toxic fume inhalation, chronic hypersensitivity pneumonitis, drugs (such as penicillamine or cocaine), and Stevens-Johnson syndrome.11 With the exception of specialised centres where large numbers of paediatric lung, heart-lung, or bone marrow transplants are performed, post-infectious BO is generally the most common form of BO in children worldwide.

For unclear reasons, post-infectious BO seems to occur more frequently in the southern hemisphere (Argentina,
Chile, New Zealand, and Australia), but it is also found in other parts of the world. Among children, pediatric bronchiolitis obliterans, although a rare condition, is a somewhat controversial entity. Questions remain regarding the prevalence of BO, the risk factors predisposing to its development, and the actual clinical significance of the disease. BO is not a primary diagnosis in children; it can be a result of the acute insult. This paper therefore addresses the importance of new information regarding the acute insult. The authors are careful to point out that the additional finding that adenovirus is involved in post-infectious BO should be extrapolated to BO in other parts of the world. This study represents a good first step in the systematic evaluation of children with BO. Whether these findings can be extrapolated to BO in other parts of the world remains to be seen.

Further research is needed to ascertain the mechanisms by which adenovirus—more than other respiratory pathogens—contributes to the development of BO. Additional investigations should be done to define more clearly the specific value of clinical presentation, pulmonary function testing, high resolution computed tomography, and lung biopsy in the diagnosis of BO in children. Surrogate markers of disease activity need to be developed. For example, recent preliminary studies that KL-6, a protein expressed by activated pulmonary epithelial cells, is increased in the serum of lung transplant patients who develop BO. Whether KL-6 would be a useful marker in post-infectious BO should be evaluated. Finally, systematic studies are needed to determine if treatments such as infusion

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
</table>

Authors’ affiliations

K J Smith, L L Fan, Department of Pediatric Pulmonology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA

Correspondence to: Dr L L Fan, Pulmonary Medicine Service, Texas Children’s Hospital, 6621 Fannin, CC1040.00, Houston, TX 77030, USA; lfan@texaschildrenshospital.org

Funding: none.

Competing interests: none declared.

www.thoraxjnl.com
Insights into post-infectious bronchiolitis obliterans in children

K J Smith and L L Fan

Thorax 2006 61: 462-463
doi: 10.1136/thx.2005.052670

Updated information and services can be found at:
http://thorax.bmj.com/content/61/6/462

These include:

References
This article cites 26 articles, 7 of which you can access for free at:
http://thorax.bmj.com/content/61/6/462#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Bronchiolitis (112)
Bronchitis (235)
Mechanical ventilation (158)
TB and other respiratory infections (1273)
Interstitial lung disease (559)
Child health (843)
Mechanical ventilation (171)
Pneumonia (infectious disease) (579)
Pneumonia (respiratory medicine) (562)
Histopathology (28)
Inflammation (1020)
Influenza (106)
Interstitial lung disease (184)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/