Surgical training

Training in the operating theatre: is it safe?
R Aggarwal, A Darzi

The importance of a systems approach to surgical training

Recent years have witnessed a number of drivers for change in the delivery of health care. Working time restrictions, quality assurance targets, the introduction of new technologies and star ratings for hospitals have served to create a movement between service and training priorities. The provision of a high quality service necessitates the employment of proficient practitioners, using tools to the highest of their abilities. This is in discord with the apprenticeship model of training whereby trainees undergo graded practice on patients, leading to the development of proficiency. Furthermore, a number of high profile cases have highlighted the need for regular audit of outcomes to ensure patient care is not compromised.

It is well known that achievement of proficiency to perform a procedure entails a learning curve during which morbidity and mortality gradually decline. However, some of the complications which occur during the learning curve are avoidable through appropriate case selection and adequate supervision during the procedure. In the example offered by Chaudhuri et al in this issue of Thorax, trainee thoracic surgeons led over one-third of the cases of lung resection. A comparison of outcomes revealed similar rates of complications and survival at 1 year. In terms of case selection, consultants operated on greater numbers of stage III tumours and trainees on a greater number of stage I tumours.

This study echoes the main features of the apprenticeship model which has been a cornerstone of skills acquisition in surgical disciplines. The key principle is to ensure patient safety whilst enabling the trainee surgeon to acquire and hone skills to perform the procedure. The notion of a graded approach allows trainees to acquire skills in a stepwise manner, through close supervision by a senior surgeon. It is the responsibility of the senior surgeon to ensure the patient does not come to any undue harm. Upon achievement of proficiency, the trainee can proceed onto performing more complex cases, eventually gaining the ability to operate independently.

Although the apprenticeship model has stood the test of time, the incorporation of new technologies for technical skills training outside the operating room can further improve patient safety. In analogy with the airline industry, it is now possible for trainees to acquire basic skills which transfer to improved performance in the operating suite." It is no longer appropriate (nor acceptable) to have a surgeon dithering in theatre. The trainee must know the basic skills and be able to undertake complex manoeuvres by the time he comes to the operating theatre. With the incorporation of simulation based training earlier in the curriculum, it may also be possible to reduce the length of the learning curve for the achievement of proficiency on real cases.

Upon achievement of proficiency in the skills laboratory, training must continue in a structured manner in the operating room. Graded exposure along with appropriate support when necessary is most effective in transferring skills from tutor to student. This should also not be limited to the operating theatre, but augmented by discussions and feedback before and after each case. In addition, the postoperative dialogue of each procedure can be supported by video footage of the operation. Thus, the model is still recognisable as graded exposure in the operating suite, but amplified by a number of other factors.

For each interventional speciality, outcomes from a key procedure are traditionally used as markers of an individual surgeon’s technical performance. However, this approach is too simplistic and fails to take account of the numerous factors which can affect patient outcome. Patient characteristics can decrease or increase the risk of complications, especially during major surgical procedures. This can be accounted for through appropriate case selection, ensuring that the sickest or most complex patients are operated upon by the most experienced surgeons. However,
is not only the surgeon who needs to be experienced to ensure an optimal outcome—the rest of the operating team can also have a significant impact on the outcome of the procedure. This is none more so than for minimally invasive procedures whereby the surgeon must rely upon the camera positioning skills of another individual. For cardiothoracic surgery, an experienced anaesthetist is crucial for those cases where the patient has minimal physiological reserves. Recent work has also shown that post-operative and ward care has a considerable impact on patient outcomes.15

In the study of outcomes following lobectomy by Chaudhuri et al.,6 surgical skill has been assessed indirectly by way of complications and mortality at 1 year. Although extensively used as a marker of complications and mortality at 1 year, skill has been assessed indirectly by way of exposure can be safe, but should be graded. With this approach it is possible to tease out individual factors which contribute to eventual patient outcome. A review of the interactions between the individuals in the operating suite and a closed circuit camera system can serve to elucidate other factors such as communication and team dynamics.16 The delivery of ward care can also be assessed through review of medical notes immediately after discharge of the patient. It is then possible not only to determine the skills of the surgeon, but also to identify any other deficiencies which may have led to sub-standard outcomes. The primary aim of a systems approach to surgical safety is to identify and reduce errors which could lead to poor outcomes.

The study by Chaudhuri et al concen-
trated specifically on a comparison between cases led by trainees or consultants. Its aim was to investigate whether it was appropriate, in terms of patient outcomes, to allow trainees to be the primary operator for complex thoracic procedures. A further focus of an outcomes database would be to analyse data for individual surgeons, ensuring high quality care across the board. This would be in synchrony with assessment of the other factors mentioned previously which also contribute to patient outcomes. Furthermore, the impact of specialist versus generalist surgeons, modifications to surgical technique, and new technologies could be accurately assessed, providing information not only to the surgeon but also to patients regarding their mode of treatment.

In summary, training in the operating theatre is a critical part of developing skills toward independent practice. The apprenticeship model of training through graded exposure can be safe, but should be augmented with simulation based practice, adequate supervision, and constructive feedback following each case. Analysis of outcomes data can ensure patient safety is not compromised, but should be placed within the wider multifactorial context of patients. It is only with this approach that we can provide the utmost level of care and continue to produce competent practitioners of the future.

Thorax 2006; 61: 278–279
doi: 10.1136/thx.2005.051789

Authors’ affiliations
R Aggarwal, A Darzi, Department of Biomedical Surgery and Surgical Technology, Imperial College London, St Mary’s Hospital, London, UK

Correspondence to: Mr R Aggarwal, Department of Biomedical Surgery and Surgical Technology, Imperial College London, St Mary’s Hospital, London W2 1NY, UK; rajesh.aggarwal@imperial.ac.uk

Funding: none.
Competing interests: none declared.

REFERENCES
Training in the operating theatre: is it safe?

R Aggarwal and A Darzi

Thorax 2006 61: 278-279
doi: 10.1136/thx.2005.051789

Updated information and services can be found at:
http://thorax.bmj.com/content/61/4/278

These include:

References
This article cites 14 articles, 3 of which you can access for free at:
http://thorax.bmj.com/content/61/4/278#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Epidemiologic studies (1829)
- Patients (155)
- Health policy (183)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/